精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列的前项和为等比数列的前项和为.

(1),求的通项公式;

(2).

【答案】(1);(2)21或.

【解析】试题分析:(1)设等差数列公差为,等比数列公比为,由已知条件求出,再写出通项公式;(2)由,求出的值,再求出的值,求出

试题解析:设等差数列公差为,等比数列公比为,即.

(1)∵,结合

.

(2)∵,解得或3,

时,,此时

时,,此时.

型】解答
束】
20

【题目】如图,已知直线与抛物线相交于两点 且点的坐标为.

1的值

2为抛物线的焦点 为抛物线上任一点的最小值.

【答案】1.24.

【解析】试题分析:1)设Ax1y1),Bx2y2),由ABODkOD=可得直线AB的斜率k=-得到直线AB的方程为,与抛物线方程联立化为,由,即,∴,即可解得的值;

2过点M作直线的垂线MN,垂足为N,则|MF|=|MN|由抛物线定义知的最小值为点到抛物线准线的距离.

试题解析:

1)设

直线的方程为

.将代入上式

整理得

.

2)过点M作直线的垂线MN,垂足为N,则|MF|=|MN|由抛物线定义知的最小值为点到抛物线准线的距离又准线方程为因此的最小值为DN=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为“常喝”,体重超过为“肥胖”.

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部人中随机抽取人,抽到肥胖的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由;

(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个有关健康饮食的电视节目,求恰好抽到一名男生和一名女生的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求的单调区间.

)当时,求函数在区间上的最小值.

)在条件()下,当最小值为时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数如果满足:对任意存在常数都有成立则称上的有界函数其中称为函数的一个上界已知函数

(1)若函数为奇函数求实数的值;

(2)在(1)的条件下求函数在区间上的所有上界构成的集合;

(3)若函数上是以5为上界的有界函数求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和是Sn , 且Sn+ =1.
(1)求数列{an}的通项公式;
(2)记bn=log3 ,数列 的前n项和为Tn , 若不等式Tn<m,对任意的正整数n恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系xOy平面内,已知动点M到点D(﹣4,0)与E(﹣1,0)的距离之比为2.
(1)求动点M的轨迹C的方程;
(2)是否存在经过点(﹣1,1)的直线l,它与曲线C相交于A,B两个不同点,且满足 (O为坐标原点)关系的点M也在曲线C上,如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣5:不等式选讲
已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一辆汽车在某段路程中的行驶速度与时间的关系如下图:

(Ⅰ)求图中阴影部分的面积,并说明所求面积的实际意义;

(Ⅱ)假设这辆汽车的里程表在汽车行驶这段路程前的读数为,试将汽车行驶这段路程时汽车里程表读数表示为时间的函数,并求出当汽车里程表读数为时,汽车行驶了多少时间?

查看答案和解析>>

同步练习册答案