精英家教网 > 高中数学 > 题目详情
17.在函数y=cosx,$x∈[{-\frac{π}{2},\frac{π}{2}}]$的图象上有一点P(t,cost),若该函数的图象与x轴、直线$x=-\frac{π}{2},x=t$,围成图形(如图阴影部分)的面积为S,则函数S=g(t)的图象大致是(  )
A.B.C.D.

分析 利用定积分求出S关于t的函数即可得出答案.

解答 解:S=g(t)=${∫}_{-\frac{π}{2}}^{t}$cosxdx=sinx${|}_{-\frac{π}{2}}^{t}$=sint+1,t∈[-$\frac{π}{2}$,$\frac{π}{2}$],
故选B.

点评 本题考查了定积分的几何意义,正弦函数的图象,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,已知O为△ABC的重心,∠BOC=90°,若4BC2=AB•AC,则A的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知i为虚数单位,若复数z满足|z-3-4i|=1,求|z|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴的一个顶点和两个焦点构成直角三角形,且该三角形的面积为1.
(Ⅰ)求椭圆年C的方程;
(Ⅱ)设F1,F2是椭圆C的左右焦点,若椭圆C的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设全集U=R,集合A={x|(x+1)(x-3)<0},B={x|x-1≥0},则图中阴影部分所表示的集合为(  )
A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}满足an=$\frac{1}{2}$an+1,若a3+a4=2,则a4+a5=(  )
A.$\frac{1}{2}$B.1C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设△ABC的内角A,B,C所对的边分别为a,b,c,且acosB=4,bsinA=3.
(1)求tanB及边长a的值;
(2)若△ABC的面积S=9,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.古代科举制度始于隋而成于唐,完备于宋、元.明代则处于其发展的鼎盛阶段.其中表现之一为会试分南卷、北卷、中卷按比例录取,其录取比例为11:7:2.若明宣德五年会试录取人数为100.则中卷录取人数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.现有10支队伍参加篮球比赛,规定:比赛采取单循环比赛制,即每支队伍与其他9支队伍各比赛一场;每场比赛中,胜方得2分,负方得0分,平局双方各得1分.下面关于这10支队伍得分的叙述正确的是(  )
A.可能有两支队伍得分都是18分B.各支队伍得分总和为180分
C.各支队伍中最高得分不少于10分D.得偶数分的队伍必有偶数个

查看答案和解析>>

同步练习册答案