精英家教网 > 高中数学 > 题目详情

平面内与两定点)连线的斜率之积等于非零常数m的点的轨迹,加上A2两点所成的曲线C可以是圆、椭圆或双曲线。

(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;

(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设的两个焦点。试问:在上,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。

(2)由(1)知,当时,C1的方程为

   当时,C2的两个焦点分别为.

   对于给定的,C1上存在点使得的充要条件是

  

      由①得,由②得

   当,或时.

   存在点N, 使      

   当,或时,

   不存在满足条件的点N.

   当时,

   由,[来源:学科网]

   可得

   令

   则由可得

   从而于是由

   可得,即

   综上可得:

   当时,在C1上,存在点N,使得,且

   当时,在C1上,存在点N,使得,且

   当时,在C1上,不存在满足条件的点N.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面内与两定点A1(-a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当m=-1时,对应的曲线为C1;对给定的m∈(-1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

记平面内与两定点A1(-2,0),A2(2,0)连线的斜率之积等于常数m(其中m<0)的动点B的轨迹,加上A1,A2两点所构成的曲线为C
(I)求曲线C的方程,并讨论C的形状与m的值的关系;
(Ⅱ)当m=-
3
4
时,过点F(1,0)且斜率为k(k#0)的直线l1交曲线C于M.N两点,若弦MN的中点为P,过点P作直线l2交x轴于点Q,且满足
MN
PQ
=0
.试求
|
PQ
|
|
MN
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内与两定点A1(-a,0),A2(a,o)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1,A2两点所成的曲线C可以是圆、椭圆或双曲线.那么当m满足条件
m=-1
m=-1
时,曲线C是圆;当m满足条件
m>0
m>0
 时,曲线C是双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内与两定点A(2,0),B(-2,0)连线的斜率之积等于-
1
4
的点P的轨迹为曲线C1,椭圆C2以坐标原点为中心,焦点在y轴上,离心率为
5
5

(Ⅰ)求C1的方程;
(Ⅱ)若曲线C1与C2交于M、N、P、Q四点,当四边形MNPQ面积最大时,求椭圆C2的方程及此四边形的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内与两定点距离之比为定值m(m≠1)的点的轨迹是

查看答案和解析>>

同步练习册答案