精英家教网 > 高中数学 > 题目详情

【题目】求所有的由实数构成的有限集合使得且对中的任意四个不同的元素都有.

【答案】,且

【解析】

(1).

,则由,得.

由对称性,不妨设.

因为,所以,.

是非零实数,且.显然,集合满足题设条件.

(2).

则集合除0外还含有至少四个元素.

(ⅰ)若中至少有四个正数,设中最大元素为,且

,且,这不可能.

(ⅱ)若中至少有四个负数,设中的最小数是,且

,且,这不可能.

(ⅲ)若中有不少于两个正数、两个负数,设中最大元素为且设,且,这不可能.

(ⅳ)若中只有三个正数一个负数,设这四个数满足则同(1)知中有且只有一个为1.不妨设.,且,这不可能.

(ⅴ)若中只有三个负数一个正数,同()可得矛盾.

综上,,且).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面,平面平面是边长为2的等边三角形,

1)证明:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.命题“若,则”的否命题为“若,则

B.命题“”的否定是“,则

C.命题“若,则”的逆否命题为真命题

D.”是“”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于曲线:上原点之外的每一点,求证存在过的直线与椭圆相交于两点,使均为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知)的方格表中的每个元素都是绝对值不大于1的实数,且方格表中所有元素之和等于0,试求最小的非负实数,使得每个这样的方格表中必有一行或一列,其元素之和的绝对值不大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数), 椭圆C的参数方程为为参数)。在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(2,

(1)求椭圆C的直角坐标方程和点A在直角坐标系下的坐标

(2)直线l与椭圆C交于P,Q两点,求△APQ的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点为曲线上任意一点且满足.

(1)求曲线的方程;

(2)设曲线轴交于两点,点是曲线上异于的任意一点,直线分别交直线于点.试问在轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案