精英家教网 > 高中数学 > 题目详情
已知F1、F2分别为椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,抛物线C2以F1为顶点,F2为焦点,设P是椭圆与抛物线的一个交点,如果椭圆的离心率e满足|PF1|=e|PF2|,则e=(  )
A、2-
3
B、
3
3
C、
2
2
D、2-
2
分析:设P到椭圆左准线的距离为D,根据椭圆的第二定义可知|PF1|=eD,根据已知条件可知|PF2|=D,即椭圆和抛物线的准线重合,进而可以推断出椭圆的焦准距等于抛物线焦准距的一半,也等于椭圆自己的焦距,建立等式求得a和c的关系,进而求得离心率e.
解答:解:设P到椭圆左准线的距离为D,则|PF1|=eD
又因为|PF1|=e|PF2|,所以|PF2|=D,
即椭圆和抛物线的准线重合,而抛物线C2以F1为顶点,以F2为焦点
所以椭圆的焦准距等于抛物线焦准距的一半,也等于椭圆自己的焦距,即
a2
c
-c=2c,
解得a2=3c2,所以椭圆的离心率e=
3
3

故选B
点评:本题主要考查了双曲线的简单性质.考查了学生对椭圆第一定义和第二定义的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆
x2
25
+
y2
9
=1的左、右焦点,P为椭圆上一点,Q是y轴上的一个动点,若|
PF1
|-|
PF2
|=4,则
PQ
•(
PF1
-
PF2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别为椭圆
x2
3
+
y2
2
=1
的左、右焦点,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为D,线段DF2的垂直平分线交l2于点M.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)过点F1作直线交曲线C于两个不同的点P和Q,设
F1P
F1Q
,若λ∈[2,3],求
F2P
F2Q
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆
x2
16
+
y2
9
=1
的左、右焦点,点P在椭圆上,若P、F1、F2是一个直角三角形的三个顶点,则△PF1F2的面积为
9
7
4
9
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆的左、右焦点,椭圆上点M的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的
2
3
,则椭圆的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲线x2-
y2
4
=1
的左、右焦点,P是双曲线上的动点,过F1作∠F1PF2的平分线的垂线,垂足为H,则点H的轨迹为(  )

查看答案和解析>>

同步练习册答案