精英家教网 > 高中数学 > 题目详情
(2012•枣庄二模)已知i为虚数单位,复数z=(2-i)(1+i)2的实部为a,虚部为b,则logab=(  )
分析:利用两个复数代数形式的乘法化简复数z为 2+4i,可得a=2,b=4,从而可得 logab 的值.
解答:解:∵复数z=(2-i)(1+i)2 =(2-i)•2i=2+4i,复数z实部为a,虚部为b,
∴a=2,b=4,
∴logab=log24=2,
故选C.
点评:本题主要考查复数的基本概念,两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知定义在R上的函数f(x)满足f(x+
3
2
)=-f(x)
,且函数y=f(x-
3
4
)
为奇函数,给出三个结论:
①f(x)是周期函数;②f(x)是图象关于点(-
3
4
,0)对称;③f(x)是偶函数.其中正确结论的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)设等比数列{an}的前n项之和为Sn,若8a2+a5=0,则
S5
S3
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)α是第四象限角,cosα=
3
5
,则cos(α-
π
4
)
=
-
2
10
-
2
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知点Q(0,2
2
)及抛物线
y
2
 
=4x
上一动点P(x,y),则x+|PQ|的最小值是
2
2

查看答案和解析>>

同步练习册答案