(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232131434711741.png)
然后分别研究
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143486475.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143517775.png)
恒成立且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143673402.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143689762.png)
恒成立时b的取值范围即可.
(2) 构造函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143720879.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232131437511676.png)
分别研究
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143783588.png)
和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143798509.png)
上的单调性,极值和最值.做出草图,数形结合解决即可
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232131438291769.png)
…………………2分
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143486475.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144079734.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144095690.png)
.
由条件,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144110573.png)
恒成立,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144126416.png)
恒成立,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143315414.png)
. ……………………4分
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143673402.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144282721.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144282674.png)
.
由条件,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144500559.png)
恒成立,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144516428.png)
恒成立,∴
b≥-2.
综合①,②得
b的取值范围是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143315414.png)
. ……………6分
(2)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143720879.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232131437511676.png)
………………8分
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143783588.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144765858.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144797762.png)
.
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143783588.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144843527.png)
.则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232131449211168.png)
.
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213144937532.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145109426.png)
在(0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145124378.png)
)上是递增函数.………………………10分
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143798509.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145187796.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145374794.png)
.
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145109426.png)
在(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145124378.png)
,+∞)上是递增函数.
又因为函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145109426.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145545485.png)
有意义,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145109426.png)
在(0,+∞)上是递增函数.………12分
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145592792.png)
,而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145717408.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145920564.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213145935622.png)
.∵
a≥2,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143330584.png)
, ……14分
当
a≥3时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143330584.png)
≥0,∴
g(
x)=0在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143346391.png)
上有惟一解.
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143361501.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143330584.png)
<0,∴
g(
x)=0在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213143346391.png)
上无解