精英家教网 > 高中数学 > 题目详情

,且
(1)令写出的值,观察并归纳出这个数列的通项公式
(2)求证:


(1)
(2)证明略

解析解: (1)故猜想
(2)假设,则,与题设矛盾,假设不成立。成立。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b,并求f(x)的单调区间;
(2)令a=-1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函数f(x)=F(3,log2(2x-x2+4)),写出函数f(x)的定义域;
(Ⅱ)令函数g(x)=F(1,log2(x3+ax2+bx+1))的图象为曲线C,若存在实数b使得曲线C在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围
(Ⅲ)当x,y∈N*且x<y时,求证F(x,y)>F(y,x).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知函数f(x)=
x+1-tt-x
(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若可用上述方法构造出一个常数列{xn},求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市崇明县高三高考模拟考试二模理科数学试卷(解析版) 题型:解答题

某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时) 的关系为,其中是与气象有关的参数,且

(1)令, ,写出该函数的单调区间,并选择其中一种情形进行证明;

(2)若用每天的最大值作为当天的综合放射性污染指数,并记作,求

(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

【解析】第一问利用定义法求证单调性,并判定结论。

第二问(2)由函数的单调性知

,即t的取值范围是. 

时,记

 

上单调递减,在上单调递增,

第三问因为当且仅当时,.

故当时不超标,当时超标.

 

查看答案和解析>>

同步练习册答案