精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若,求yfx)的最大值和最小值,并写出相应的x值;

2)将函数yfx)的图象向右平移个单位,再向上平移1个单位,得到函数ygx)的图象,区间[ab]abRab)满足:ygx)在[ab]上至少含有20个零点,在所有满足上述条件的[ab]中,求ba的最小值.

【答案】1x时,,最小值为 x时,最大值为1;(2

【解析】

1)根据三角函数的单调性的性质;

2)根据三角函数的图象关系,求出函数的解析式,利用三角函数的性质进行求解即可.

(1)∵

2x[]

sinx2x≤1,即fx)∈[1]

x时,fx)取得最小值,最小值为

x时,fx)取得最大值,最大值为1

(2)函数yfx)的图象向右平移个单位,再向上平移1个单位,得到函数ygx)的图象,

gx)=2sin[2x]+12sin2x+1

gx)=2sin2x+10,解得xkπxkπkZ

gx)的零点相离间隔依次为

故若ygx)在[ab]上至少含有20个零点,则ba的最小值为109

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的离心率为,过椭圆右焦点作两条互相垂直的弦.当直线的斜率为时,.

(1)求椭圆的方程;

(2)求由四点构成的四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是,当时,.

1)求证:是奇函数;

2)求在区间上的解析式;

3)是否存在正整数,使得当时,不等式有解?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某河流上的一座水力发电站,每年六月份的发电量(单位:万千瓦时)与该河上游在六月份的降雨量(单位:毫米)有关据统计,当时, 每增加10增加5.已知近20的值为:14011016070200160140160220200110160160200140110160220140160

1)完成如下的频率分布表:近20年六月份降雨量频率分布表

2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小李大学毕业后选择自主创业,开发了一种新型电子产品.2019年9月1日投入市场销售,在9月份的30天内,前20天每件售价(元)与时间(天,)满足一次函数关系,其中第一天每件售价为63元,第10天每件售价为90元;后10天每件售价均为120元.已知日销售量(件)与时间(天)之间的函数关系是.

(1)写出该电子产品9月份每件售价(元)与时间(天)的函数关系式;

(2)9月份哪一天的日销售金额最大?并求出最大日销售金额.(日销售金额=每件售价日销售量).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为(

A. 1个B. 2个C. 3个D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

试销单价(元)

4

5

6

7

8

9

产品销量(件)

q

84

83

80

75

68

已知.

(Ⅰ)求出的值;

(Ⅱ)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程

(Ⅲ)用表示用(Ⅱ)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取2个,求“好数据”至少有一个的概率.

(参考公式:线性回归方程中的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆为坐标原点,动点在圆外,过点作圆的切线,设切点为.

(1)若点运动到处,求此时切线的方程;

(2)求满足的点的轨迹方程.

查看答案和解析>>

同步练习册答案