精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点AB且直线PAy轴于M直线PBy轴于N

求直线l的斜率的取值范围

O为原点求证为定值

【答案】(1) 取值范围是-∞,-3)-3,0)(0,1)

(2)证明过程见解析

【解析】分析:(1)先确定p,再设直线方程,与抛物线联立,根据判别式大于零解得直线l的斜率的取值范围,最后根据PAPBy轴相交,舍去k=3,(2)先设Ax1y1),Bx2y2),与抛物线联立,根据韦达定理可得再由利用直线PA,PB的方程分别得点M,N的纵坐标,代入化简可得结论.

详解:解:Ⅰ)因为抛物线y2=2px经过点P(1,2),

所以4=2p,解得p=2,所以抛物线的方程为y2=4x

由题意可知直线l的斜率存在且不为0,

设直线l的方程为y=kx+1(k≠0).

依题意解得k<00<k<1.

PAPBy轴相交,故直线l不过点(1,-2).从而k-3.

所以直线l斜率的取值范围是-∞,-3)-3,0)(0,1).

(Ⅱ)设Ax1y1),Bx2y2).

由(I)知

直线PA的方程为y–2=

x=0,得点M的纵坐标为

同理得点N的纵坐标为

所以

所以为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,,的平分线,且,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2AD=BAD=90°

求证:ADBC

求异面直线BCMD所成角的余弦值;

(Ⅲ)求直线CD与平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,若椭圆上一点满足,且椭圆过点,过点的直线与椭圆交于两点 .

(1)求椭圆的方程;

(2)过点轴的垂线,交椭圆,求证: 三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱柱ABC-平面ABCDEFG分别为AC的中点AB=BC=AC==2.

求证AC平面BEF

求二面角B-CD-C1的余弦值

证明直线FG与平面BCD相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的图像在处的切线方程;

(2)证明:

(3)若不等式对任意的均成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以“你我中国梦,全民建小康”为主题、“社会主义核心价值观”为主线,为了了解两个地区的观众对2018年韩国平昌冬奥会准备工作的满意程度,对地区的100名观众进行统计,统计结果如下:

在被调查的全体观众中随机抽取1名“非常满意”的人是地区的概率为0.45,且.

(Ⅰ)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“满意”的地区的人数各是多少

(Ⅱ)在(Ⅰ)抽取的“满意”的观众中,随机选出3人进行座谈,求至少有两名是地区观众的概率

(Ⅲ)完成上述表格,并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了个轮胎,将每个轮胎的宽度(单位: )记录下来并绘制出如下的折线图:

(1)分别计算甲、乙两厂提供的个轮胎宽度的平均值;

(2)轮胎的宽度在内,则称这个轮胎是标准轮胎.

(i)若从甲乙提供的个轮胎中随机选取个,求所选的轮胎是标准轮胎的概率

(ii)试比较甲、乙两厂分别提供的个轮胎中所有标准轮胎宽度的方差大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆与圆有公共点,则实数的取值范围是___

查看答案和解析>>

同步练习册答案