精英家教网 > 高中数学 > 题目详情
19.如图,直线PD⊥平面ABCD,ABCD为正方形,PD=AD,求直线PA与BD所成角的大小.

分析 令PD=AD=1,取PD中点为E,AD中点为F,AB中点为M,连结EF、EM、FM,由已知推导出∠EFM就是直线PA与BD所成角或其补角,由此能求出直线PA与BD所成角的大小.

解答 (本题满分12分)
解:令PD=AD=1,取PD中点为E,AD中点为F,AB中点为M,
连结EF、EM、FM,
则EF∥PA,FM∥BD,
∴∠EFM就是直线PA与BD所成角或其补角.…(4分)
又∵在△EFM中,EF=$\frac{1}{2}AP$=$\frac{1}{2}\sqrt{{1}^{2}+{1}^{2}}$=$\frac{\sqrt{2}}{2}$,
FM=$\frac{1}{2}$BD=$\frac{1}{2}\sqrt{{1}^{2}+{1}^{2}}$=$\frac{\sqrt{2}}{2}$,
连结DM,得EM=$\sqrt{D{M}^{2}+D{E}^{2}}$=$\sqrt{{1}^{2}+(\frac{1}{2})^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{6}}{2}$,
∴cos∠EFM=$\frac{E{F}^{2}+F{M}^{2}-M{E}^{2}}{2×EF×MF}$=$\frac{\frac{1}{2}+\frac{1}{2}-\frac{3}{2}}{2×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}}$=-$\frac{1}{2}$,
∴∠EFM=120°,…(10分)
∴直线PA与BD所成角的大小为60°.…(12分)

点评 本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设函数f(x+1)为R上的奇函数,当x>1时,f(x)=2x-6x,则f(-1)+f(1)=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD中(图1),E是BC的中点,DB=2,DC=1,BC=$\sqrt{5}$,AB=AD=$\sqrt{2}$,将(图1)沿直线BD折起,使二面角A-BD-C成锐二面角且三棱锥A-BDC的体积为$\frac{\sqrt{3}}{6}$.(如图2)
(1)求证:平面ABC⊥平面BDC;
(2)求直线AE与平面ADC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,AC=2,二面角P-BC-A的大小为60°,三棱锥P-ABC的体积为$\frac{{4\sqrt{6}}}{3}$,则直线PB与平面PAC所成的角的正弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动.
(Ⅰ)求线段AB的中点轨迹方程M;
(Ⅱ)求轨迹M上的点到点P(5,4)的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α为第四象限的角,则tan$\frac{α}{2}$(  )
A.一定是正数B.一定是负数
C.正数、负数都有可能D.有可能是零

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某人有一容积为V,高为a且装满了油的直三棱柱形容器,不小心将该容器掉在地上,有两处破损并发生渗漏,其位置分别在两条侧棱上且距下底面高度分别为b、c的地方,且容器盖也被摔开了(盖为上底面),为减少油的损失,此人采用破口朝上,倾斜容器的方式拿回家,估计容器内的油最理想的剩余量是多少.(容器壁的厚度忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若点(16,tanθ)在函数y=log2x的图象上,则$\frac{1+cos2θ+8si{n}^{2}θ}{sin2θ}$=(  )
A.$\frac{20\sqrt{3}}{3}$B.$\frac{65}{4}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若实数a,b,c成等差数列,点P(-3,2)在动直线ax+by+c=0上的射影为H,点Q(3,3),则线段QH的最大值为$5+2\sqrt{2}$.

查看答案和解析>>

同步练习册答案