精英家教网 > 高中数学 > 题目详情
已知圆心角为120°的扇形AOB的半径为1,C为弧AB的中点,点D、E分别在半径OA、OB上.若CD2+CE2+DE2=
26
9
,则OD+OE的最大值是______.
设OD=a,OE=b,由余弦定理,得CD2=CO2+DO2-2CO•DOcos60°=a2-a+1.
同理可得CE2=b2-b+1,DE2=a2+ab+b2
从而得到CD2+CE2+DE2=2(a2+b2)-(a+b)+ab+2=
26
9

∴2(a2+b2)-(a+b)+ab-
8
9
=0,
配方得2(a+b)2-(a+b)-3ab-
8
9
=0,即3ab=2(a+b)2-(a+b)-
8
9
…(*)
又∵ab≤[
1
2
(a+b)]2=
1
4
(a+b)2
∴3ab≤
3
4
(a+b)2,代入(*)式,得2(a+b)2-(a+b)-
8
9
3
4
(a+b)2
设a+b=m,代入上式有2m2-m-
8
9
3
4
m2
5
4
m2-m-
8
9
≤0,得到-
8
15
≤m≤
4
3

∴m最大值为
4
3
,即OD+OE的最大值是
4
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

一条河的两岸平行,河的宽度m,一艘船从处出发到河对岸.已知船的速度km/h,水流速度km/h.要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小.此时我们分三种情况讨论:
(1)  当船逆流行驶,与水流成钝角时;
(2)  当船顺流行驶,与水流成锐角时;
(3)  当船垂直于对岸行驶,与水流成直角时.
请同学们计算上面三种情况,是否当船垂直于对岸行驶时,与水流成直角时,所用时间最短

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知|
a
|=3
,|
b
|=2,
a
b
的夹角为60°,如果(3
a
+5
b
)⊥(m
a
-
b
),则m的值为(  )
A.
32
23
B.
23
42
C.
29
42
D.
42
32

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给定两个长度为1的平面向量
OA
OB
,它们的夹角为120°.如图所示,点C在以O为圆心,以1半径的圆弧AB上变动.若
OC
=x
OA
+y
OB
,其中x,y∈R,则x+y的最大值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在△ABC中,AD⊥AB,
BC
=
3
BD
|
AD
|=1
,则
AC
AD
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a
b
是两个非零向量.则下列命题为真命题的是(  )
A.若|
a
+
b
|=|
a
|-|
b
|,则
a
b
B.若
a
b
,则|
a
+
b
|=|
a
|-|
b
|
C.若|
a
+
b
|=|
a
|-|
b
|,则存在实数λ,使得
b
a
D.若存在实数λ,使得
b
a
,则|
a
+
b
|=|
a
|-|
b
|

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC的边AB边所在直线的方程为x-3y-6=0,M(2,0)满足
BM
=
MC
,点T(-1,1)在AC边所在直线上且满足
AT
AB
=0

(1)求AC边所在直线的方程;
(2)求△ABC外接圆的方程;
(3)若动圆P过点N(-2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

B是点A(1,2,3)在坐标平面yOz内的射影,则|OB|=   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点A, B的坐标分别为(-5,0),(5,0),直线AM,BM相交于点M, 且它们的斜率之积是,则点M的轨迹方程为                      

查看答案和解析>>

同步练习册答案