精英家教网 > 高中数学 > 题目详情

【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照 ,…, 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中 的值;

(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(Ⅲ)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由;

【答案】(Ⅰ);(Ⅱ) 人 ;(Ⅲ) 估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.

【解析】试题分析:()利用频率分布直方图中的矩形面积的和为1的值;()首先计算月均用水量大于等于3吨的频率,80万乘以频率就是所求的人数;()首先大体估计 的区间,再计算区间 的频率和为0.85时,求解的值.

试题解析:(Ⅰ)由频率分布直方图,可得

解得.

(Ⅱ)由频率分布直方图可知,100位居民每人月用水量不低于3吨的人数为

由以上样本频率分布,可以估计全市80万居民中月均用水量不低于3吨的人数为

.

(Ⅲ) 前6组的频率之和为

而前5组的频率之和为

,解得

因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】EC垂直Rt△ABC的两条直角边,D是斜边AB的中点,AC=6,BC=8,EC=12,则DE的长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥A﹣BCDE中,底面BCDE为平行四边形,平面ABE⊥平面BCDE,AB=AE,DB=DE,∠BAE=∠BDE=90°
(1)求异面直线AB与DE所成角的大小;
(2)求二面角B﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为集合A,已知集合B={x|1<x<3},C={x|x≥m},全集为R.
(1)求(RA)∩B;
(2)若(A∪B)∩C≠,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校对高三年级的学生进行体检,现将高三男生的体重(单位:㎏)数据进行整理后分成五组,并绘制频率分布直方图(如图所示).根据一般标准,高三男生的体重超过65㎏属于偏胖,低于55㎏属于偏瘦,已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25、0.20、0.10、0.05,第二小组的频率数为400,则该校高三年级的男生总数和体重正常的频率分别为(

A.1000,0.50
B.800,0.50
C.1000,0.60
D.800,0.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三(1)班的一次数学测试成绩的茎叶图和频举分布直方图都受到不同程度的破坏,可见部分

如下.

(1)求全班人数及分数在内的频数;

(2)估计该班的平均分数,并计算频率分布直方图中的矩形的高;

(3)若要从分数在内的试卷中任取两份分析学生的失分情况,在抽取的试卷中,求至少有一份分数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m),m∈R所表示的曲线C的性状,下列说法正确的是(
A.对于m∈(1,3),曲线C为一个椭圆
B.m∈(﹣∞,1)∪(3,+∞)使曲线C不是双曲线
C.对于m∈R,曲线C一定不是直线
D.m∈(1,3)使曲线C不是椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:),其频率分布直方图如下:

(1)估计旧养殖法的箱产量低于50的概率并估计新养殖法的箱产量的平均值;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量

箱产量

合计

旧养殖法

新养殖法

合计

附:,其中

0.050

0.010

0.001

3.841

6.635

10.828

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两个命题,p:关于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案