精英家教网 > 高中数学 > 题目详情
16.在△ABC中,D是BC的中点,则$\overrightarrow{AB}$+$\overrightarrow{AC}$等于(  )
A.2$\overrightarrow{DA}$B.2$\overrightarrow{AD}$C.2$\overrightarrow{BD}$D.2$\overrightarrow{DB}$

分析 由向量加法的平行四边形法则即可求出$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}$.

解答 解:根据条件:$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}$.
故选:B.

点评 考查向量加法的平行四边形法则,以及向量数乘的几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在△ABC中,A,B,C是三角形的三内角,a,b,c是三内角对应的三边,已知b2+c2-a2=bc.
(1)求∠A;
(2)若a=$\sqrt{7}$,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:解答题

阅读下列有关光线的入射与反射的两个事实现象,现象(1):光线经平面镜反射满足入射角与反射角相等(如图1);现象(2):光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图2).试结合上述事实现象完成下列问题:

(1)有一椭圆型台球桌,长轴长为短轴长为.将一放置于焦点处的桌球击出,经过球桌边缘的反射(假设球的反射完全符合现象(2))后第一次返回到该焦点时所经过的路程记为,求的值(用表示);

(2)结论:椭圆上任一点处的切线的方程为.记椭圆的方程为

①过椭圆的右准线上任一点向椭圆引切线,切点分别为,求证:直线恒过一定点;

②设点为椭圆上位于第一象限内的动点,为椭圆的左右焦点,点的内心,直线轴相交于点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.卵形线是常见曲线的一种,分笛卡尔卵形线和卡西尼卵形线,卡西尼卵形线是平面内与两个定点(叫做焦点)距离之积等于常数的点的轨迹.某同学类比椭圆与双曲线对卡西尼卵形线进行了相关性质的探究,设焦点F1(-c,0),F2(c,0)是平面内两个定点,|PF1|•|PF2|=a2(a是定长),得出卡西尼卵形线的相关结论:
①当a=0,c=1时,次轨迹为两个点F1(-1,0),F2(1,0);
②若a=c,则曲线过原点;
③若0<a<c,则曲线不存在;
④既是轴对称也是中心对称图形.
其中正确命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设命题p:方程$\frac{{x}^{2}}{1-m}$+$\frac{{y}^{2}}{m+2}$=1表示双曲线;命题q:$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{2-m}$=1表示焦点在x轴上的椭圆,若p∧q是假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一列数据分别为1,2,3,4,5,则方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知0<a<3,复数z=a+i(i是虚数单位),则|z|的取值范围是(  )
A.(1,$\sqrt{10}$)B.(1,$\sqrt{3}$)C.(1,3)D.(1,10)

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

为抛物线上的两动点,且线段的长为6,为线段的中点,则点轴的最短距离为

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.4$\sqrt{5}$

查看答案和解析>>

同步练习册答案