精英家教网 > 高中数学 > 题目详情
13.已知抛物线y2=-x与直线y=k(x+1)相交于A,B两点.
(1)求证:OA⊥OB;
(2)是否存k使△OAB的面积等于1,若存在求k的值,若不存在说明理由.

分析 (1)画出图象,利用韦达定理求出直线的斜率,通过斜率的乘积为-1,证明OA⊥OB;
(2)求出三角形的面积,然后利用方程是否有解,得出结果.

解答 解:(1)如图所示,由抛物线y2=-x与直线y=k(x+1),消去x得,ky2+y-k=0.

设A(x1,y1)、B(x2,y2),由根与系数的关系得y1•y2=-1,y1+y2=-$\frac{1}{k}$.
∵A、B在抛物线y2=-x上,
∴y1=-x1,y2=-x2,∴y1•y2=x1x2
∵kOA•kOB=$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$═-1,∴OA⊥OB.
(2)设直线与x轴交于点N,显然k≠0.
令y=0,得x=-1,即N(-1,0).
∵S△OAB=S△OAN+S△OBN
=|ON||y1|+|ON||y2|=|ON|•|y1-y2|,
∴S△OAB=1•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$═$\sqrt{4+\frac{1}{{k}^{2}}}$=1,方程不成立,
不存在k使△OAB的面积等于1.

点评 本题考查抛物线与直线的位置关系的应用,考查分析问题解决问题的能力,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.飞机的航线和山顶在同一个铅垂直平面内,已知飞机的高度为海拔15000m,速度为1000km/h,飞行员先看到山顶的俯角为18°,经过108s后又看到山顶的俯角为78°,则山顶的海拔高度为(  )
A.(15-18$\sqrt{3}$sin18°cos78°)kmB.(15-18$\sqrt{3}$sin18°sin78°)km
C.(15-20$\sqrt{3}$sin18°cos78°)kmD.(15-20$\sqrt{3}$sin18°sin78°)km

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,实数m的最大值为t
(1)求实数t
(2)已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是$\frac{t}{20}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果复数在z=$\frac{3-i}{2+i}$,则|z|等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足|$\overrightarrow{a}$|=1且($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{1}{2}$.$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为45°,求|$\overrightarrow{a}$-$\overrightarrow{b}$|的值(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知关于x的不等式2x-1>m(x2-1).
(1)是否存在实数m,使不等式对任意的x∈R恒成立?并说明理由.
(2)若对于m∈[-2,2]不等式恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.sin(-945°)的值为(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{3}}{2}$D..$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=a{x^3}-\frac{3}{2}(a+2){x^2}+6x-3$
(Ⅰ) 当a=1时,求函数f(x)的极小值;
(Ⅱ)当a≤0时,试讨论曲线y=f(x)与x轴公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.参数方程$\left\{\begin{array}{l}x=cosθ\\ y=1+cosθ\end{array}\right.$(θ∈R)化为普通方程是x2+(y-1)2=1.

查看答案和解析>>

同步练习册答案