精英家教网 > 高中数学 > 题目详情

【题目】若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差单位:mm,将所得数据分组,得到如下频率分布表:

[-3,-2

0.10

[-2,-1

8

1,2]

0.50

2,3]

10

3,4]

合计

50

1.00

1将上面表格中缺少的数据填充完整.

2估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间1,3]内的概率.

3现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.

【答案】1表格见解析2 3

【解析】

试题分析:1根据频率的定义可得正解;2不合格品的直径长与标准值的差落在区间内的概率为3合格品的件数为.

试题解析:

解:1

合计

2不合格品的直径长与标准值的差落在区间内的概率为.

答:不合格品的直径长与标准值的差落在区间内的概率为.

3合格品的件数为 .

答:合格品的件数为件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】春节期间某超市搞促销活动,当顾客购买商品的金额达到一定数量后可以参加抽奖活动,活动规则为:从装有个黑球, 个红球, 个白球的箱子中(除颜色外,球完全相同)摸球.

(Ⅰ)当顾客购买金额超过元而不超过元时,可从箱子中一次性摸出个小球,每摸出一个黑球奖励元的现金,每摸出一个红球奖励元的现金,每摸出一个白球奖励元的现金,求奖金数不少于元的概率;

(Ⅱ)当购买金额超过元时,可从箱子中摸两次,每次摸出个小球后,放回再摸一次,每摸出一个黑球和白球一样奖励元的现金,每摸出一个红球奖励元的现金,求奖金数小于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 上单调递增,

(1)若函数有实数零点,求满足条件的实数的集合

(2)若对于任意的时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知, 对边分别为,已知.

1)若的面积等于,求

2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,点分别在的图象上

1若函数处的切线恰好与相切,求的值;

2若点的横坐标均为,记,当时,函数取得极大值,求的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示.

(1)求函数的解析式;

(2)将函数的图象向右平移个单位,得到的图象,求直线

函数的图象在内所有交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店销刚刚上的某知名品牌的三数学单元卷,按事先拟定的价格进行天试销,每种价试销天,得到如下数据:

单价(元)

销量(册)

(1)求试销天的销量的方差和的回归直线方程;

(2)预计今后的销售中,销与单价服从(1)中的回归方程,已知每册单元卷的成本是,

为了获得最大利润,该单元卷的单价应定为多少元?

附: ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某公司技术升级后生产产品过程中记录的产量(吨)与相应的成本(万元)的几组对照数据:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出的回归直线方程;

(3)已知该公司技术升级前生产100吨产品的成本为90万元.试根据(2)求出的回归直线方程,预测技术升级后生产100吨产品的成本比技术升级前约降低多少万元?

(附: ,其中为样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调递增区间;

(2)将函数的图像向左平移个单位后,再将图像上各点的横坐标伸长到原来的倍,纵坐标不变,得到函数的图像,求的最大值及取得最大值时的的集合.

查看答案和解析>>

同步练习册答案