精英家教网 > 高中数学 > 题目详情
设a,b都是正数,且满足
1
a
+
4
b
=1则使a+b>c恒成立的实数c的取值范围是
 
考点:基本不等式在最值问题中的应用
专题:计算题,不等式的解法及应用
分析:由题知利用“1”的代换,以及基本不等式求解即可得到答案.
解答: 解:∵a,b均为正数,
1
a
+
4
b
=1,
∴a+b=(a+b)(
1
a
+
4
b
)=5+
b
a
+
4a
b
≥5+2
b
a
4a
b
=9.当且仅当b=2a,a=3,b=6时取等号.
∴a+b>c恒成立的实数c的取值范围是c<9.
故答案为:(-∞,9).
点评:本题考查基本不等式的应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,三个内角A、B、C的对边分别为a、b、c,若a=2,b=2
2
,∠C=15°,则内角A的值为(  )
A、30°
B、60°
C、30°或150°
D、60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:

两个变量的数据如表,
x1357
y45m8
已知回归方程为y=
7
5
x+
2
5
,则表中缺失的数据m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,-2a<b<-a,a+b+c=0,求
b2-3ac
a2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(1,7)
OB
=(5,1)(O为坐标原点),设M是函数y=
1
2
x所在直线上的一点,那么
MA
MB
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(
π
2
-α)sin(-α)tan(π-α)
tam(-α)sin(π-α)

(1)化简f(α);
(2)若α为第三象限角,且cos(
2
-α)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,满足Sn=
3
2
an-3
(1)数列{an}的通项公式;
(2)若Sn>can(c为常数)对任意n∈N* 都成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M在曲线y=ex+
1
ex
上,N点在y=
3
2
x上,则|MN|的最小值为(  )
A、
13
13
(4-3ln2)
B、
13
13
(3-3ln2)
C、
13
13
(5-3ln2)
D、
13
13
(3-2ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:

点(1,2)与圆
x=-1+3cosθ
y=3sinθ
,的位置关系是(  )
A、点在圆内B、点在圆外
C、点在圆上D、与θ的值有关

查看答案和解析>>

同步练习册答案