【题目】在极坐标系中,已知圆C的圆心C( , ),半径r= .
(1)求圆C的极坐标方程;
(2)若α∈[0, ),直线l的参数方程为 (t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范围.
【答案】
(1)解:∵C( , )的直角坐标为(1,1),
∴圆C的直角坐标方程为(x﹣1)2+(y﹣1)2=3.
化为极坐标方程是ρ2﹣2ρ(cosθ+sinθ)﹣1=0
(2)解:将 代入圆C的直角坐标方程(x﹣1)2+(y﹣1)2=3,
得(1+tcosα)2+(1+tsinα)2=3,
即t2+2t(cosα+sinα)﹣1=0.
∴t1+t2=﹣2(cosα+sinα),t1t2=﹣1.
∴|AB|=|t1﹣t2|= =2 .
∵α∈[0, ),∴2α∈[0, ),
∴2 ≤|AB|<2 .
即弦长|AB|的取值范围是[2 ,2 )
【解析】(1)先利用圆心坐标与半径求得圆的直角坐标方程,再利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 进行代换即得圆C的极坐标方程.(2)设A,B两点对应的参数分别为t1 , t2 , 则|AB|=|t1﹣t2|,化为关于α的三角函数求解.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=是定义在R上的奇函数;
(1)求a、b的值,判断并证明函数y=f(x)在区间(1,+∞)上的单调性
(2)已知k<0且不等式f(t2-2t+3)+f(k-1)<0对任意的t∈R恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x(1+a|x|),a∈R.
(1)当a=-1时,求函数的零点;
(2)若函数f(x)在R上递增,求实数a的取值范围;
(3)设关于x的不等式f(x+a)<f(x)的解集为A,若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示,甲的成绩中有一个数的个位数字模糊,在茎叶图中用表示.(把频率当作概率).
(1)假设,现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?
(2)假设数字的取值是随机的,求乙的平均分高于甲的平均分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题中:
①命题“若x≥2且y≥3,则x+y≥5”为假命题.
②命题“若x2-4x+3=0,则x=3”的逆否命题为:“若x≠3,则x2-4x+3≠0”.
③“x>1”是“|x|>0”的充分不必要条件
④关于x的不等式|x+1|+|x-3|≥m的解集为R,则m≤4.
其中所有正确命题的序号是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com