精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知四棱锥P—ABCD的三视图如右图所示,
其中正(主)视图与侧(左)视为直角三角形,俯视图为正方形。
  (1)求四棱锥P—ABCD的体积;
  (2)若E是侧棱上的动点。问:不论点E在PA的
任何位置上,是否都有
请证明你的结论?
(3)求二面角D—PA—B的余弦值。


不论点E在何位置,都有

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题12分)
如图1所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在∠BAD的平分线上;
(2)求这个平行六面体的体积。

图1                                      

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,FD垂直于矩形ABCD所在平面,CE//DF, ∠DEF=900
(1)求证:BE//平面ADF;
(2)若矩形ABCD的一个边AB="3," 另一边BC=2,EF=2,求几何体ABCDEF的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)
如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=
BAD=90°,AB中点,FPC中点.
(I)求证:PEBC
(II)求二面角CPEA的余弦值;
(III)若四棱锥PABCD的体积为4,求AF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

边长为的正方形沿对角线折成的二面角,则的长为(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P—ABCD的底面为矩形,PA=AD=1,PA⊥面ABCD,E是AB的中点,F为PC上一点,且EF//面PAD。

(I)证明:F为PC的中点;
(II)若二面角C—PD—E的平面角的余弦值为求直线ED与平面PCD所成的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,求这个多面体最长的一条棱的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)(1)已知为平面外的两平行直线,且有,求证:
(2)画出下面实物的三视图。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设m,n是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:
①若m?β,α⊥β,则m⊥α;②若α∥β,m?α,则m∥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β.
其中正确命题的序号是(  )

A.①③B.①②C.③④D.②③

查看答案和解析>>

同步练习册答案