精英家教网 > 高中数学 > 题目详情
15.已知双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$的左右焦点分别为F1,F2,过F2的直线与双曲线的右支交于两点A,B,且|AB|=4,则△AF1B的周长为16.

分析 根据双曲线的定义和性质,即可求出三角形的周长.

解答 解:由双曲线的方程$\frac{x^2}{4}-\frac{y^2}{3}=1$的可知a=2,
则|AF1|-|AF2|=4,|BF1|-|BF2|=4,
则|AF1|+|BF1|-(|BF2|+|AF2|)=8,
即|AF1|+|BF1|=|BF2|+|AF2|+8=|AB|+8=8+4=12,
则△ABF1的周长为|AF1|+|BF1|+|AB|=12+4=16,
故答案为:16.

点评 本题主要考查双曲线的定义,根据双曲线的定义得到A,B到两焦点距离之差是个常数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若数x,y满足$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{2x+y-7≤0}\end{array}}\right.$,则z=x-2y的最小值是(  )
A.-3B.-4C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC中,AB=6,AC=8,∠BAC=90°,△ABC所在平面α外一点P到点A、B、C的距离都是13,则P到平面α的距离为(  )
A.7B.9C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为(  )
A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx+ax.
(1)若曲线f(x)在点(1,f(1))处的切线与直线y=4x+1平行,求a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x∈N|x2+2x-3≤0},B={C|C⊆A},则集合B中元素的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{1}{3}{f}^{'}(e)x+xlnx$(其中,e为自然对数的底数).
(Ⅰ)求f′(e);
(Ⅱ)求函数f(x)的极值;
(Ⅲ)若整数k使得f(x)>k(x-1)恒成立,求整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a=(4,-2)$,$\overrightarrow b=(x,1)$,若$\overrightarrow a∥\overrightarrow b$,则$|\overrightarrow a+\overrightarrow b|$=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知$a=3,b=2,c=\sqrt{19}$,求△ABC的面积S.

查看答案和解析>>

同步练习册答案