【题目】如图,在平面直角坐标系中,已知椭圆()的上顶点为,圆经过点.
(1)求椭圆的方程;
(2)过点作直线交椭圆于,两点,过点作直线的垂线交圆于另一点.若△PQN的面积为3,求直线的斜率.
科目:高中数学 来源: 题型:
【题目】某种类型的题目有,,,,5个选项,其中有3个正确选项,满分5分.赋分标准为“选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分”在某校的一次考试中出现了一道这种类型的题目,已知此题的正确答案为,假定考生作答的答案中的选项个数不超过3个.
(1)若甲同学无法判断所有选项,他决定在这5个选项中任选3个作为答案,求甲同学获得0分的概率;
(2)若乙同学只能判断选项是正确的,现在他有两种选择:一种是将AD作为答案,另一种是在这3个选项中任选一个与组成一个含有3个选项的答案,则乙同学的最佳选择是哪一种,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】继空气净化器之后,某商品成为人们抗雾霾的有力手段,根据该商品厂提供的数据,从2015年到2018年,购买该商品的人数直线上升,根据统计图, 说法错误的是( )
A. 连续3年,该商品在1月的销售量增长显著。
B. 2017年11月到2018年2月销量最多。
C. 从统计图上可以看出,2017年该商品总销量不超过6000台。
D. 2018年2月比2017年2月该商品总销量少。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.
(1)由频率分布直方图估计该校高三年级男生平均身高状况;
(2)求这50名男生身高在172 cm以上(含172 cm)的人数;
(3)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为一块边长为2km的等边三角形地块ABC,为响应国家号召,现对这块地进行绿化改造,计划从BC的中点D出发引出两条成60°角的线段DE和DF,与AB和AC围成四边形区域AEDF,在该区域内种上草坪,其余区域修建成停车场,设∠BDE=.
(1)当=60°时,求绿化面积;
(2)试求地块的绿化面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司研发了两种具有自主知识产权的操作系统,分别命名为“天下”、“东方”.这两套操作系统均适用于手机、电脑、车联网、物联网等,且较国际同类操作系统更加流畅.
(1)为了解喜欢“天下”系统是否与性别有关,随机调查了名男用户和名女用户,每位用户对“天下”系统给出喜欢或不喜欢的评价,得到下面列联表:
请问:能否有的把握认为男、女用户对“天下”系统的喜欢有差异?
附:.
(2)该公司选定万名用户对“天下”和“东方”操作系统(以下简称“天下”、“东方”)进行测试,每个用户只能从“天下”或“东方”中选择一个使用,每经过一个月后就给用户一次重新选择“天下”或“东方”的机会.这个月选择“天下”的用户在下个月选择“天下”的概率均为,选择“东方”的概率均为,;这个月选择“东方”的用户在下个月选择“天下”的概率均为,选择“东方”的概率均为,.记表示第个月用户选择“天下”的概率,已知,,,,.
(ⅰ)求的值;
(ⅱ)证明:数列()为等比数列;
(ⅲ)预测选择“天下”操作系统的用户数量不超过多少万人.(精确到1万)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com