精英家教网 > 高中数学 > 题目详情
是平面两定点,点满足,则点的轨迹方程是          .
   

试题分析:因为为定点且,所以根据椭圆的定义可知动点是以为焦点,为长轴长的椭圆,所以,进而,所以动点的轨迹方程为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且,求a,b.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1的焦点是F1,F2,如果椭圆上一点P满足PF1⊥PF2,则下面结论正确的是(  )
A.P点有两个B.P点有四个
C.P点不一定存在 D.P点一定不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,点在椭圆上.
(1)求椭圆C的方程;
(2)设椭圆的左右顶点分别是A、B,过点的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·泰安模拟]曲线=1(m<6)与曲线=1(5<n<9)的(  )
A.焦距相等B.离心率相等
C.焦点相同D.准线相同

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的左焦点重合,则的值为(   )
A.-8B.-16C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)(2011•福建)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线r的离心率等于(        )
A.B.或2C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与椭圆相交于两点,点是线段上的一点,且点在直线上.
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)过点,且椭圆的离心率为
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.求直线是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。

查看答案和解析>>

同步练习册答案