精英家教网 > 高中数学 > 题目详情

【题目】已知0<β<α< ,tanα=4 ,cos(α﹣β)=
(1)求sin2α的值;
(2)求β的大小.

【答案】
(1)解:因为 ,且 ,所以,

所以,


(2)解:因为 ,所以 ,又因为 ,所以,

所以cosβ=cos[α﹣(α﹣β)]=

因为 ,所以


【解析】(1)由条件利用同角三角函数的基本关系求得sinα、cosα的值,可得sin2α的值.(2)由条件利用同角三角函数的基本关系求得sin(α﹣β)的值,可得cosβ=cos[α﹣(α﹣β)]的值,结合β的范围求得β的值.
【考点精析】解答此题的关键在于理解同角三角函数基本关系的运用的相关知识,掌握同角三角函数的基本关系:;(3) 倒数关系:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在120分以上(含120分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[135,150]的学生中选两位同学,共同帮助成绩在[60,75)中的某一位同学.已知甲同学的成绩为62分,乙同学的成绩为140分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表:

分组

频数

频率

[60,75)

2

0.04

[75,90)

3

0.06

[90,105)

14

0.28

[105,120)

15

0.30

[120,135)

A

B

[135,150]

4

0.08

合计

C

D

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是常数.

(Ⅰ)若,且曲线的切线经过坐标原点,求该切线的方程

(Ⅱ)讨论的零点的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比数列.
(1)求数列{an}的通项公式;
(2)设{ }是首项为1公比为2的等比数列,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位举行联欢活动,每名职工均有一次抽奖机会,每次抽奖都是从甲箱和乙箱中各随机摸取1个球,已知甲箱中装有3个红球,5个绿球,乙箱中装有3个红球,3个绿球,2个黄球.在摸出的2个球中,若都是红球,则获得一等奖;若都是绿球,则获得二等奖;若只有1个红球,则获得三等奖;若1个绿球和1个黄球,则不获奖.
(1)求每名职工获奖的概率;
(2)设X为前3名职工抽奖中获得一等奖和二等奖的次数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的极坐标方程为ρsin(θ+ )=
(1)在极坐标系下写出θ=0和θ= 时该直线上的两点的极坐标,并画出该直线;
(2)已知Q是曲线ρ=1上的任意一点,求点Q到直线l的最短距离及此时Q的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是一块足球训练场地,其中球门AB宽7米,B点位置的门柱距离边线EF的长为21米,现在有一球员在该训练场地进行直线跑动中的射门训练.球员从离底线AF距离x(x≥10)米,离边线EF距离a(7≤a≤14)米的C处开始跑动,跑动线路为CD(CD∥EF),设射门角度∠ACB=θ.

(1)若a=14,
①当球员离底线的距离x=14时,求tanθ的值;
②问球员离底线的距离为多少时,射门角度θ最大?
(2)若tanθ= ,当a变化时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,△ABC是边长为6的正三角形,设 (x,y∈R).

(1)若x=y=1,求| |;
(2)若 =36, =54,求x,y.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人一周5次乘车上班的时间(单位:分钟)分别为10,11,9,x,11,已知这组数据的平均数为10,那么这组数据的方差为

查看答案和解析>>

同步练习册答案