分析 作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.
解答 解:作出不等式组对应的平面区域如图:
由z=3x+4y得y=-$\frac{3}{4}$x+$\frac{z}{4}$,
平移直线y=-$\frac{3}{4}$x+$\frac{z}{4}$由图象可知当直线y=-$\frac{3}{4}$x+$\frac{z}{4}$经过点O时,直线y=-$\frac{3}{4}$x+$\frac{z}{4}$的截距最小,
此时z最小,最小值为z=0,
当直线y=-$\frac{3}{4}$x+$\frac{z}{4}$经过点A时,直线y=-$\frac{3}{4}$x+$\frac{z}{4}$的截距最大,
此时z最大,
由$\left\{\begin{array}{l}{x+2y=12}\\{2x+y=16}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{20}{3}}\\{y=\frac{8}{3}}\end{array}\right.$,
即A($\frac{20}{3}$,$\frac{8}{3}$),
此时z最大值z=3×$\frac{20}{3}$+$\frac{8}{3}$×4=$\frac{92}{3}$.
点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键考查学生的作图能力.
科目:高中数学 来源: 题型:选择题
A. | 奇函数 | B. | 偶函数 | ||
C. | 既是奇函数又是偶函数 | D. | 非奇非偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com