ÒÑÖªÅ×ÎïÏߵĶ¥µãÔÚ×ø±êÔ­µãO£¬½¹µãFÔÚxÖáÕý°ëÖáÉÏ£¬Çãб½ÇΪÈñ½ÇµÄÖ±Ïßl¹ýFµã£¬ÉèÖ±ÏßlÓëÅ×ÎïÏß½»ÓÚA¡¢BÁ½µã£¬ÓëÅ×ÎïÏßµÄ×¼Ïß½»ÓÚMµã£¬
MF
=¦Ë
FB
£¨¦Ë£¾0£©
£¨1£©Èô¦Ë=1£¬ÇóÖ±ÏßlбÂÊ
£¨2£©ÈôµãA¡¢BÔÚxÖáÉϵÄÉäÓ°·Ö±ðΪA1£¬B1ÇÒ|
B1F
|£¬|
OF
|£¬2|
A1F
|³ÉµÈ²îÊýÁÐÇó¦ËµÄÖµ
£¨3£©ÉèÒÑÖªÅ×ÎïÏßΪC1£ºy2=x£¬½«ÆäÈƶ¥µã°´ÄæʱÕë·½ÏòÐýת90¡ã±ä³ÉC1¡ä£®Ô²C2£ºx2+£¨y-4£©2=1µÄÔ²ÐÄΪµãN£®ÒÑÖªµãPÊÇÅ×ÎïÏßC1¡äÉÏÒ»µã£¨ÒìÓÚÔ­µã£©£¬¹ýµãP×÷Ô²C2µÄÁ½ÌõÇÐÏߣ¬½»Å×ÎïÏßC¡ä1ÓÚT£¬S£¬Á½µã£¬Èô¹ýN£¬PÁ½µãµÄÖ±Ïßl´¹Ö±ÓÚTS£¬ÇóÖ±ÏßlµÄ·½³Ì£®
ÒÀÌâÒâÉèÅ×ÎïÏß·½³ÌΪy2=2px£¨p£¾0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßlµÄбÂÊΪk£¬k£¾0£¬MµÄ×Ý×ø±êΪy0£¬
ÔòF£¨
p
2
£¬0£©×¼Ïß·½³ÌΪx=-
p
2

Ö±ÏßlµÄ·½³ÌΪy=k£¨x-
p
2
£©£¬M£¨-
p
2
£¬y0£©£¬y2£¾0
¡ß
MF
=¦Ë
FB
£¬¡à£¨p£¬-y0£©=¦Ë£¨x2-
p
2
£¬y0£©£¬¹Êp=¦Ë£¨x2-
p
2
£©
£¨1£©Èô¦Ë=1£¬ÓÉp=¦Ë£¨x2-
p
2
£©£¬y22=2px2£¬y2£¾0£¬µÃx2=
3p
2
£¬y2=
3
p£¬
¡àB£¨
3p
2
£¬
3
p£©
¡àÖ±ÏßlµÄбÂÊk=
3
p
3p
2
-
p
2
=
3
£»
£¨2£©Ö±ÏßlµÄ·½³Ì´úÈëy2=2px£¬ÏûÈ¥y£¬¿ÉµÃk2x2-£¨k2p+2p£©x+
k2p2
4
=0£¬Ôòx1x2=
p2
4

¡ßx2=
p
¦Ë
+
p
2
£¬¡àx1=
p2
4x2
=
¦Ëp
2¦Ë+4

¡ß|
B1F
|£¬|
OF
|£¬2|
A1F
|³ÉµÈ²îÊýÁÐ
¡à2|
OF
|=|
B1F
|+2|
A1F
|£¬
¡à(x2-
p
2
)+2(
p
2
-x1)=p

¡àx2-2x1=
p
2

½«x2=
p
¦Ë
+
p
2
ºÍx1=
¦Ëp
2¦Ë+4
´úÈëÉÏʽµÃ
1
¦Ë
=
¦Ë
¦Ë+2
£¬¡à¦Ë=2£»
£¨3£©ÉèP£¨x0£¬x02£©£¬S£¨x1£¬x12£©£¬T£¨x2£¬x22£©£¬ÓÉÌâÒâµÃx0¡Ù0£¬x0¡Ù¡À1£¬x1¡Ùx2£®
Éè¹ýµãPµÄÔ²C2µÄÇÐÏß·½³ÌΪy-x02=k£¨x-x0£©£¬¼´y=kx-kx0+x02£®¢Ù
Ôò
|kx0+4-x02|
1+k2
=1£¬
¼´£¨x02-1£©k2+2x0£¨4-x02£©k+£¨x02-4£©2-1=0£®
ÉèPS£¬PTµÄбÂÊΪk1£¬k2£¨k1¡Ùk2£©£¬Ôòk1£¬k2ÊÇÉÏÊö·½³ÌµÄÁ½¸ù£¬ËùÒÔ
k1+k2=
2x0(x02-4)
x02-1
£¬k1k2=
(x02-4)2-1
x02-1
£®
½«¢Ù´úÈëy=x2£¬µÃx2-kx+kx0-x02=0£¬
ÓÉÓÚx0ÊÇ´Ë·½³ÌµÄ¸ù£¬¹Êx1=k1-x0£¬x2=k2-x0£¬
ËùÒÔkST=
x12-x22
x1-x2
=x1+x2=k1+k2-2x0=
2x0(x02-4)
x02-1
-2x0£¬kNP=
x02-4
x0
£®
ÓÉMP¡ÍAB£¬µÃkNP•kST=[
2x0(x02-4)
x02-1
-2x0]•
x02-4
x0
=-1£¬½âµÃx02=
23
5
£¬
¼´µãPµÄ×ø±êΪ£¨¡À
23
5
£¬
23
5
£©£¬ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=¡À
3
115
115
x+4
£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Éè·Ö±ðÊÇË«ÇúÏßµÄ×ó¡¢ÓÒ½¹µã£®ÈôµãÔÚË«ÇúÏßÉÏ£¬ÇÒ£¬Ôò                       .

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨±¾Ð¡ÌâÂú·Ö13·Ö£©ÒÑÖªµãÊÇÍÖÔ²ÉϵÄÒ»µã£¬,ÊÇÍÖÔ²µÄÁ½¸ö½¹µã,ÇÒÂú×ã.(¢ñ)ÇóÍÖÔ²µÄ·½³Ì¼°ÀëÐÄÂÊ;(¢ò)Éèµã,ÊÇÍÖÔ²ÉϵÄÁ½µã,Ö±Ïß,µÄÇãб½Ç»¥²¹,ÊÔÅжÏÖ±ÏßµÄбÂÊÊÇ·ñΪ¶¨Öµ?²¢ËµÃ÷ÀíÓÉ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÍÖÔ²C1µÄ½¹µãÔÚxÖáÉÏ£¬ÖÐÐÄÊÇ×ø±êÔ­µãO£¬ÇÒÓëÍÖÔ²C2£º
x2
12
+
y2
4
=1
µÄÀëÐÄÂÊÏàͬ£¬³¤Ö᳤ÊÇC2³¤Ö᳤µÄÒ»°ë£®A£¨3£¬1£©ÎªC2ÉÏÒ»µã£¬OA½»C1ÓÚPµã£¬P¹ØÓÚxÖáµÄ¶Ô³ÆµãΪQµã£¬¹ýA×÷C2µÄÁ½Ìõ»¥Ïà´¹Ö±µÄ¶¯ÏÒAB£¬AC£¬·Ö±ð½»C2ÓÚB£¬CÁ½µã£¬Èçͼ£®

£¨1£©ÇóÍÖÔ²C1µÄ±ê×¼·½³Ì£»
£¨2£©ÇóQµã×ø±ê£»
£¨3£©ÇóÖ¤£ºB£¬Q£¬CÈýµã¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªA¡¢B¡¢CÊdz¤Ö᳤Ϊ4µÄÍÖÔ²ÉϵÄÈýµã£¬µãAÊdz¤ÖáµÄÒ»¸ö¶¥µã£¬BC¹ýÍÖÔ²ÖÐÐÄO£¬Èçͼ£¬ÇÒ
AC
BC
=0
£¬|BC|=2|AC|£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©Èç¹ûÍÖÔ²ÉÏÁ½µãP¡¢Qʹ¡ÏPCQµÄƽ·ÖÏß´¹Ö±AO£¬Ôò×Ü´æÔÚʵÊý¦Ë£¬Ê¹
PQ
=¦Ë
AB
£¬Çë¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÒÑÖª¶¯µãP£¨x£¬y£©Âú×㣬
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
£¬Ôò
y-1
x-3
È¡Öµ·¶Î§£¨¡¡¡¡£©
A£®(-¡Þ£¬
1
2
]¡È[4£¬+¡Þ)
B£®(-¡Þ£¬
1
4
]¡È[2+¡Þ)
C£®[
1
2
£¬4]
D£®[
1
4
£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨ÎÄ£©Èçͼ£¬OΪ×ø±êÔ­µã£¬¹ýµãP£¨2£¬0£©ÇÒбÂÊΪkµÄÖ±Ïßl½»Å×ÎïÏßy2=2xÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£®
£¨1£©Çóx1x2Óëy1y2µÄÖµ£»
£¨2£©ÇóÖ¤£ºOA¡ÍOB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑ֪˫ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌÊÇy=xºÍy=-x£¬ÇÒ¹ýµãD(
2
£¬
3
)
£®l1£¬l2ÊǹýµãP(-
2
£¬0)
µÄÁ½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïߣ¬ÇÒl1£¬l2ÓëË«ÇúÏ߸÷ÓÐÁ½¸ö½»µã£¬·Ö±ðΪA1£¬B1ºÍA2£¬B2£®
£¨1£©ÇóË«ÇúÏߵķ½³Ì£»
£¨2£©Çól1бÂʵķ¶Î§
£¨3£©Èô|A1B1|=
5
|A2B2|
£¬Çól1µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

Å×ÎïÏßy2=2px(p>0)ÓëË«ÇúÏßÓÐÏàͬ½¹µãF£¬µãAÊÇÁ½ÇúÏß½»µã£¬ÇÒAF¡ÍxÖᣬÔòË«ÇúÏßµÄÀëÐÄÂÊΪ                                                                   £¨ £©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸