精英家教网 > 高中数学 > 题目详情
根据如图所示的程序框图,将输出的x,y值依次分别记为x1,x2,…,xn,…,x2008;y1,y2,…,yn,…,y2008.

(1)求数列{xn}的通项公式.
(2)写出y1,y2,y3,y4,由此猜想出数列{yn}的一个通项公式yn,并证明你的结论.
(3)求zn=x1y1+x2y2+…+xnyn(n∈N*,n≤2008).
(1) xn=2n-1(n∈N*,n≤2008)
(2) yn=3n-1(n∈N*,n≤2008),证明见解析
(3) zn=(n-1)·3n+1+3-n2(n∈N*,n≤2008)
(1)由框图,知数列{xn}中,x1=1,xn+1=xn+2,
∴xn=1+2(n-1)=2n-1(n∈N*,n≤2008).
(2)y1=2,y2=8,y3=26,y4=80.
由此,猜想yn=3n-1(n∈N*,n≤2008).
证明:由框图,知数列{yn}中,yn+1=3yn+2,
∴yn+1+1=3(yn+1),∴=3,y1+1=3,
∴数列{yn+1}是以3为首项,3为公比的等比数列,
∴yn+1=3·3n-1=3n,
∴yn=3n-1(n∈N*,n≤2008).
(3)zn=x1y1+x2y2+…+xnyn
=1×(3-1)+3×(32-1)+…+(2n-1)(3n-1)
=1×3+3×32+…+(2n-1)·3n-[1+3+…+(2n-1)]
记Sn=1×3+3×32+…+(2n-1)·3n ①
则3Sn=1×32+3×33+…+(2n-1)·3n+1 ②
①-②,得-2Sn=3+2·32+2·33+…+2·3n-(2n-1)·3n+1
=2(3+32+…+3n)-3-(2n-1)·3n+1
=2×-3-(2n-1)·3n+1
=3n+1-6-(2n-1)·3n+1
=2(1-n)·3n+1-6,
∴Sn=(n-1)·3n+1+3.
又1+3+…+(2n-1)=n2,
∴zn=(n-1)·3n+1+3-n2(n∈N*,n≤2008).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列an求a1+a2+a3+a4+…+a99+a100的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对任意x∈R,函数f(x)满足f(x+1)= ,设an=[f(n)]2-f(n),数列{an}的前15项的和为,则f(15)=    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:

将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(1)b2012是数列{an}中的第    项;
(2)b2k-1=    .(用k表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,则等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的公差d=1,前n项和为Sn.
(1)若1,a1a3成等比数列,求a1
(2)若S5a1a9,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等差数列中,已知,则=(  )
A.10B.18 C.20D.28

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列的通项公式为,前项和为,若对任意的正整数,不等式恒成立,则常数所能取得的最大整数为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}的通项公式是an=2n-3()n,则其前20项和为(  )
A.380-(1-)B.400-(1-)
C.420-(1-)D.440-(1-)

查看答案和解析>>

同步练习册答案