精英家教网 > 高中数学 > 题目详情

对任意都有
(Ⅰ)求的值.
(Ⅱ)数列满足:=+,数列是等差数列吗?请给予证明;
(Ⅲ)令试比较的大小.

(Ⅰ).(Ⅱ)
(Ⅲ),利用“放缩法”。

解析试题分析:(Ⅰ)因为.所以.   2分
,得,即.          4分
(Ⅱ)
                          5分
两式相加

所以,                                          7分
.故数列是等差数列.         9分
(Ⅲ)


                        10分
                   12分

所以                                            14分
考点:本题主要考查抽象函数问题,等差数列的证明,“放缩法”证明不等式,“裂项相消法”。
点评:中档题,本题具有较强的综合性,本解答从确定数列相邻项的关系入手,认识到数列的特征,利用“错位相消法”达到求和目的。“分组求和法”“裂项相消法”“错位相减法”是高考常常考到数列求和方法。(III)先将和式通过放缩利用“裂项相消法”实现求和,达到证明目的。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列满足
(1)设是公差为的等差数列.当时,求的值;
(2)设求正整数使得一切均有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,
(1)判断数列是否是等差数列,并说明理由;
(2)如果,试写出数列的通项公式;
(3)在(2)的条件下,若数列得前n项和为,问是否存在这样的实数,使当且仅当时取得最大值。若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,若对于任意的正整数都有
(1)设,求证:数列是等比数列,并求出的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是增函数
(1)求实数的取值集合
(2)当取值集合中的最小值时, 定义数列;满足, , 设, 证明:数列是等比数列, 并求数列的通项公式.
(3)若, 数列的前项和为, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,为正整数.
(Ⅰ)求的值;
(Ⅱ)数列的通项公式为(),求数列的前项和;
(Ⅲ)设数列满足:,,设,若(Ⅱ)中的满足:对任意不小于3的正整数n,恒成立,试求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,数列满足,数列满足;又知数列中,,且对任意正整数.
(Ⅰ)求数列和数列的通项公式;
(Ⅱ)将数列中的第项,第项,第项,……,第项,……删去后,剩余的项按从小到大的顺序排成新数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和,数列满足
(1)求数列的通项公式;(2)求数列的前项和;
(3)求证:不论取何正整数,不等式恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知数列是各项均不为的等差数列,公差为为其前项和,且满足.数列满足为数列的前n项和.
(Ⅰ)求数列的通项公式和数列的前n项和
(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

同步练习册答案