精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域、值域均为R,f(x)的反函数f-1(x),且对任意实数x,均有f(x)+f-1(x)<x,定义数列{an}:a0=8,a1=10,an=f(an-1),n=1,2,…

(1)求证:an+1+an-1an(n=1,2,…);

(2)设bn=an+1-2an,n=0,1,2,…,求证:bn<(-6)()n(n∈N*).

(3)是否存在常数A和B,同时满足

①当n=0及n=1时,有an=成立;

②当n=2,3,…时,有an成立.

如果存在满足上述条件的实数A、B,求出A、B的值;如果不存在,证明你的结论.

答案:(1)证明:∵f(x)+f-1(x)<x,令x=an,∴f(an)+f-1(an)<an,

即an+1+an-1an.                                                            

(2)证明:∵an+1an-an-1,∴an+1-2an(an-2an-1),

即bnbn-1.∵b0=a1-2a0=-6,

∴bn<()nb0=(-6)()n(n∈N*).                                                

(3)解:由(2)知:an+1<2an+(-6)()n,

假设存在常数A和B,使得an=对于n=0、1成立,则a0=A+B=8,a1==10,

解得A=B=4.                                                                

下面用数学归纳法证明an对于n=2,3,…成立.

①当n=2时,由an+1+an-1an得a2a1-a0=×10-8=17=,

∴n=2时,an成立.

②假设n=k(k≥2)时,不等式成立,即ak,

则ak+1<2ak+(-6)()k<2×+(-6)()k=.

这说明n=k+1时,不等式成立.

综合①②可知:an对于n=2,3,…成立.

∴A=B=4满足题设.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年东城区示范校质检一理)(14分)

设函数f(x)是定义在上的奇函数,当时, (a为实数).

   (Ⅰ)求当时,f(x)的解析式;

   (Ⅱ)若上是增函数,求a的取值范围;

   (Ⅲ)是否存在a,使得当时,f(x)有最大值-6.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x)>0的x的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的奇函数,并且f(x+2)=-f(x),当0≤x≤1时,有f(x)=x,则f(3.5)=____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则f()=________.

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试理科数学(上海卷) 题型:填空题

设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0

x的取值范围是                  .

 

查看答案和解析>>

同步练习册答案