精英家教网 > 高中数学 > 题目详情
11.若中心在原点的双曲线的一条渐近线经过点(3,-4),则此双曲线的离心率为$\frac{5}{4}$或$\frac{5}{3}$.

分析 根据中心在原点的双曲线的一条渐近线经过点(3,-4),$\frac{b}{a}$=$\frac{3}{4}$或$\frac{4}{3}$,利用离心率公式,可得结论.

解答 解:∵中心在原点的双曲线的一条渐近线经过点(3,-4),
∴$\frac{b}{a}$=$\frac{3}{4}$或$\frac{4}{3}$,
∴e=$\frac{c}{a}$=$\frac{5}{4}$或$\frac{5}{3}$.
故答案为:$\frac{5}{4}$或$\frac{5}{3}$.

点评 本题考查双曲线的简单性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在数列{an},{bn}中,{an}的前n项和为Sn,点(n,Sn)在函数y=x2+2x的图象上.{bn}满足$\frac{{b}_{n+1}}{{b}_{n}}$=2,b1=2
(1)求{an},{bn}的通项公式;
(2)令Cn=an•bn,求数列Cn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=1,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)在线段AB上是否存在点M,使PM与平面PDB所成角的正弦值为$\frac{{\sqrt{38}}}{19}$?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线T:y2=2px(p>0)的焦点为F,A(x0,y0)为T上异于原点的任意一点,点D为x的正半轴上的点,且有|FA|=|FD|,若x0=3时,D的横坐标为5.
(1)求T的方程;
(2)直线AF交T于另一点B,直线AD交T于另一点C,试求△ABC的面积S关于x0的函数关系式S=f(x0),并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$<$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列各组函数中,表示同一函数的是(  )
A.$y=x+1与y=\frac{{{x^2}+x}}{x}$B.$f(x)=\frac{x^2}{{{{({\sqrt{x}})}^2}}}与g(x)=x$
C.$f(x)=x\frac{|x|}{x}与f(t)=\left\{\begin{array}{l}t(t>0)\\-t(t<0)\end{array}\right.$D.$f(x)=|x|与g(x)=\left\{\begin{array}{l}x(x>0)\\-x(x<0)\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x-1|+|x-a|.
(1)当a=2时,解不等式f(x)≥4;
(2)若不等式f(x)≥a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将函数f(x)=sin2x的图象向左平移$\frac{π}{4}$个长度单位,得到函数g(x)的图象,则g(x)的单调递增区间是(  )
A.(kπ-$\frac{π}{2}$,kπ)(k∈Z)B.(kπ,kπ+$\frac{π}{2}$)(k∈Z)C.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$)(k∈Z)D.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知不交于同一点的三条直线l1:4x+y-4=0,l2:mx+y=0,l3:x-my-4=0
(1)当这三条直线不能围成三角形时,求实数m的值.
(2)当l3与l1,l2都垂直时,求两垂足间的距离.

查看答案和解析>>

同步练习册答案