精英家教网 > 高中数学 > 题目详情
曲线y=
ax
和y=x2在它们的交点处的两条切线互相垂直,则a的值是
 
分析:先求出它们交点的横坐标,再求出它们的斜率表达式,由两条切线互相垂直、斜率之积等于-1,
解出a的值.
解答:解:曲线y=
a
x
和y=x2的交点的横坐标是a
1
3
,它们的斜率分别是
-a
x2
=-a
1
3
和 2x=2a
1
3

∵切线互相垂直,∴-a
1
3
•2a
1
3
=-1,∴a=±
2
4
,故答案为 a=±
2
4
点评:本题考查曲线与方程、两条直线垂直的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下五个命题
①设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为[0,
π
4
],则点P到曲线y=f(x)对称轴距离的取值范围为[0,
1
2a
];
②一质点沿直线运动,如果由始点起经过t称后的位移为s=
1
3
t3-
3
2
t2+2t
,那么速度为零的时刻只有1秒末;
③若函数f(x)=loga(x3-ax)(a>0,且a≠1)在区间(-
1
2
,0)
内单调递增,则a的取值范围是[
3
4
,1)

④定义在R上的偶函数f(x),满足f(x+1)=-f(x),则f(x)的图象关于x=1对称;
⑤函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.其中正确的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx与g(x)=a2x2+ax+1(a>0)
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P,Q,且曲线y=f(x)和y=g(x)在点P,Q处的切线平行,求实数a的值;
(2)f′(x)为f(x)的导函数,若对于任意的x∈(0,+∞),e
1
f′(x)
-mx≥0
恒成立,求实数m的最大值;
(3)在(2)的条件下且当a取m最大值的
2
e
倍时,当x∈[1,e]时,若函数h(x)=f(x)-kf′(x)的最小值恰为g(x)的最小值,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题:
(1)若f(x)=ax2+bx+3a+b是偶函数,其定义域是[a-1,2a],则f(x)在区间(-
2
3
,-
1
3
)
是减函数.
(2)如果一个数列{an}的前n项和Sn=abn+c,(a≠0,b≠1,c≠1)则此数列是等比数列的充要条件是a+c=0.
(3)曲线y=x3+x+1过点(1,3)处的切线方程为:4x-y-1=0.
(4)已知集合P∈{(x,y)|y=k},Q∈{(x,y)|y=ax+1,a>0且a≠1},若P∩Q只有一个子集.则k<1.
以上四个命题中,正确命题的序号是
(1)(2)
(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3处的切线方程为(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax围成的三角形面积为定值;
(2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m-x)=k对于定义域内的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三个解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)在曲线y=x-
2
x
上存在两个不同点关于直线y=x对称,求出其坐标;若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取a=
1
16
a=
2
2
加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)

查看答案和解析>>

同步练习册答案