精英家教网 > 高中数学 > 题目详情
为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图,如右图.
估算众数,中位数,平均数.
考点:频率分布直方图
专题:概率与统计
分析:根据频率分布直方图提供的信息,在频率分布直方图中,众数是最高的小长方形的底边的中点横坐标的值,中位数是所有小长方形的面积相等的分界线,平均数是各小长方形底边中点的横坐标与对应频率的积的和,由此求出即可.
解答: 解:由频率分布直方图可知,众数为
55+65
2
=60;
因为0.2+0.4>0.5,所以中位数一定在[55,65]之间,设中位数为x,则0.2+(x-55)×0.04=0.5,解得x=62.5,
所以中位数为62.5,
平均数为(50×0.02+60×0.04+70×0.025+80×0.01+90×0.005)×10=64,所以平均数64;
点评:本题考查了频率分布直方图岁反映的调查数据;在频率分布直方图中,根据众数、中位数和平均数的意义,众数是最高的小长方形的底边的中点横坐标的值,中位数是所有小长方形的面积相等的分界线,平均数是各小长方形底边中点的横坐标与对应频率的积的和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=1+log2x与g(x)=2-x+1在同一直角坐标系下的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log2x,x>0
3x,x≤0
,则f(f(log3
1
2
))=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+1(x≤0)
log
1
3
x(x>0)
,则f(f(-3))=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x<0},B={x|-
5
<x
5
},则(  )
A、A∩B=∅B、A∪B=R
C、B⊆AD、A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a,b,c且a2-(b-c)2=(2-
3
)bc,B=
π
6
,BC边上中线AM的长为
7

(Ⅰ)求角A和角C的大小;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某几何体的下部分是长为8,宽为6,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:
(1)该几何体的体积;
(2)该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x

(1)判断并证明函数f(x)在区间[1,+∞)上的单调性;
(2)若x2+1≥ax在[1,∞)恒成立,求参数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>b>0,则下列不等式成立的是(  )
A、
2ab
a+b
a+b
2
ab
B、
a+b
2
ab
2ab
a+b
C、
a+b
2
2ab
a+b
ab
D、
2ab
a+b
ab
a+b
2

查看答案和解析>>

同步练习册答案