精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(a+1)lnx+ax2+1
(1)讨论函数f(x)的单调性;
(2)设a<-1.如果对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围.
分析:(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.
(2)根据第一问的单调性先对|f(x1)-f(x2)|≥4|x1-x2|进行化简整理,转化成研究g(x)=f(x)+4x在(0,+∞)单调减函数,再利用参数分离法求出a的范围.
解答:解:(Ⅰ)f(x)的定义域为(0,+∞).f′(x)=
a+1
x
+2ax=
2ax2+a+1
x

当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加;
当a≤-1时,f′(x)<0,故f(x)在(0,+∞)单调减少;
当-1<a<0时,令f′(x)=0,解得x=
-
a+1
2a

则当x∈(0,
-
a+1
2a
)
时,f'(x)>0;x∈(
-
a+1
2a
,+∞)
时,f'(x)<0.
故f(x)在(0,
-
a+1
2a
)
单调增加,在(
-
a+1
2a
,+∞)
单调减少.
(Ⅱ)不妨假设x1≥x2,而a<-1,由(Ⅰ)知在(0,+∞)单调减少,
从而?x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|
等价于?x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1
令g(x)=f(x)+4x,则g′(x)=
a+1
x
+2ax+4

①等价于g(x)在(0,+∞)单调减少,即
a+1
x
+2ax+4≤0

从而a≤
-4x-1
2x2+1
=
(2x-1)2-4x2-2
2x2+1
=
(2x-1)2
2x2+1
-2

故a的取值范围为(-∞,-2].(12分)
点评:本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案