精英家教网 > 高中数学 > 题目详情

【题目】已知{an}为正项等比数列,a1+a2=6,a3=8.

(1)求数列{an}的通项公式an

(2)若bn=,且{bn}前n项和为Tn,求Tn

【答案】(1) an=2n;(2) Tn=2-(n+2)(n

【解析】

(1)等比数列的公比设为q,q>0,由等比数列的通项公式,解方程可得所求通项;

(2)求得bn==nn,运用数列的错位相减法求和,以及等比数列的求和公式,化简计算可得所求和.

(1){an}为正项等比数列,公比设为qq0a1+a2=6a3=8

可得a1+a1q=6a1q2=8

解得a1=q=2

an=2n

(2)bn==nn

Tn=1+2+…+nn

Tn=1+2+…+nn+1

相减可得Tn=+++…+n-nn+1

=-nn+1

化简可得Tn=2-n+2n

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆心在x轴上的圆C与直线切于点,圆.

1)求圆C的标准方程;

2)已知,圆Px轴相交于两点(点M在点N的右侧),过点M任作一条倾斜角不为0的直线与圆C相交于两点.问:是否存在实数a,使得?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是函数的导数, 为自然对数的底数, (,).

(Ⅰ)求的解析式及极值;

(Ⅱ)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆某地区年至年农村居民家庭人均纯收入(单位:万元)的数据如表:

年份

年份代号

纯收入

1)求关于的线性回归方程;

2)利用(1)中的回归方程,分析年至年该地区农村居民家庭人均纯收入的变化情况,并预测该地区年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面ABCD是菱形,且是等边三角形.

(Ⅰ)证明:

(Ⅱ)若平面平面ABCD,求二面的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)①建立月总成本y与月产量x之间的回归方程;

②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?

(均精确到0.001)

附注:①参考数据:

②参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个同学家开了一个奶茶店,他为了研究气温对热奶茶销售杯数的影响,从一季度中随机选取5天,统计出气温与热奶茶销售杯数,如表:

气温oC)

0

4

12

19

27

热奶茶销售杯数

150

132

130

104

94

(Ⅰ)求热奶茶销售杯数关于气温的线性回归方程精确到0.1),若某天的气温为15oC,预测这天热奶茶的销售杯数;

(Ⅱ)从表中的5天中任取一天,若已知所选取该天的热奶茶销售杯数大于120,求所选取该天热奶茶销售杯数大于130的概率.

参考数据:.参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,,现以为折痕把折起,使点到达点的位置,且.

1)证明:平面平面

2)若为棱上一点,且平面分三棱锥所得的上下两部分的体积比为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量 (单位:千件)与销售价格 (单位:元/件)之间满足如下的关系式:为常数.已知销售价格为元/件时,每月可售出千件.

(1)求实数的值;

(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)

查看答案和解析>>

同步练习册答案