精英家教网 > 高中数学 > 题目详情
2.若集合A={x|-1≤2x+1≤3},B=$\{x|\frac{x-2}{x}≤0\}$,则A∪B={x|-1≤x≤2}.

分析 化简集合A,B,再由并集的含义可得.

解答 解:集合A={x|-1≤2x+1≤3}={x|-1≤x≤1},
B=$\{x|\frac{x-2}{x}≤0\}$={x|0<x≤2},
则A∪B={x|-1≤x≤2}.
故答案为:{x|-1≤x≤2}.

点评 本题考查集合的补集运算,同时考查分式不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知正三棱柱ABC-A1B1C1的底面边长为4cm,高为10cm,则一质点自点A出发,沿着三棱柱的侧面,绕行两周到达点A1的最短路线的长为(  )
A.16cmB.12$\sqrt{3}$cmC.24$\sqrt{3}$cmD.26cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)为定义在R上的奇函数,其图象关于x=1对称,且f(1)=1,则f(-1)+f(8)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等比数列{an}的前6项和S6=21,且4a1、$\frac{3}{2}$a2、a2成等差数列,则an=$\frac{{{2^{n-1}}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=$\sqrt{5}$.
(1)求证:PD⊥平面PAB;
(2)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在等差数列{an}中,已知a5=10,a12=31,则公差d=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,点列{An},{Bn}分别在某个锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+2,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+2,n∈N*(P≠Q表示P与Q不重合).若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )
A.{dn}是等差数列B.{dn2}是等差数列C.{Sn}是等差数列D.{Sn2}是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱锥A-BCD中,AB=CD=2$\sqrt{13}$,BC=AD=$\sqrt{41}$,AC=BD=$\sqrt{61}$,则三棱锥A-BCD的外接球的表面积为77π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

同步练习册答案