精英家教网 > 高中数学 > 题目详情

【题目】如右图所示,已知点的重心,过点作直线与两边分别交于两点,且,则的最小值为 ( )

A. 2 B. C. D.

【答案】C

【解析】因为三点共线,所以,因为重心,所以,所以,化简得,解得题目所给图像可知.由基本不等式得

,即.当且仅当,即时,等号成立,故最小值为.

【易错点晴】本题主要考查向量的几何运算及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用时等号能否同时成立).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂对一批产品的质量进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图.已知样本中产品净重在[70,75)克的个数是8个.
(Ⅰ)求样本容量;
(Ⅱ)若从净重在[60,70)克的产品中任意抽取2个,求抽出的2个产品恰好是净重在[65,70)的产品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球.乙箱子里装有1个白球、2个黑球.每次游戏从这两个箱子里随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏结束后,①摸出3个白球的概率?②获奖的概率?
(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为检验寒假学生自主学习的效果,年级部对某班50名学生各科的检测成绩进行了统计,下面是政治成绩的频率分布直方图,其中成绩分组区间是:

(1)求图中的值及平均成绩;

(2)从分数在中选5人记为,从分数在中选3人,记为,8人组成一个学习小组.现从这5人和3人中各选1人做为组长,求被选中且未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其定义域为),设

(Ⅰ)试确定 的取值范围,使得函数上为单调函数;

(Ⅱ)试判断的大小并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4-4:坐标系与参数方程

已知直线的极坐标方程为,圆的参数方程为

(其中为参数).

)将直线的极坐标方程化为直角坐标方程;

)求圆上的点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂今年前五个月每月生产某种产品的数量C(件)关于时间t(月)的函数图象如图所示,则这个工厂对这种产品来说(  )

A.一至三月每月生产数量逐月增加,四、五两月每月生产数量逐月减少
B.一至三月每月生产数量逐月增加,四、五月每月生产数量与三月持平
C.一至三月每月生产数量逐月增加,四、五两月均停止生产
D.一至三月每月生产数量不变,四、五两月均停止生产

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x(1﹣x).
(1)在如图所给直角坐标系中画出函数f(x)的草图,并直接写出函数f(x)的零点;
(2)求出函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017西安铁一中五模已知函数,其中常数.

)讨论上的单调性;

)当时,若曲线上总存在相异两点,使曲线两点处的切线互相平行,试求的取值范围.

查看答案和解析>>

同步练习册答案