分析 由函数的最值求出A和B,由周期求出ω,可得函数的解析式,再代值计算即可.
解答 解:$f(x)=Asin(ωx-\frac{π}{6})+B(A>0,ω>0)$的最大值为3,最小值为-1,
∴$\left\{\begin{array}{l}{A+B=3}\\{-A+B=-1}\end{array}\right.$,
解的A=2,B=1,
再根据图象相邻两条对称轴之间的距离为$\frac{π}{2}$,可得函数的周期为$\frac{2π}{ω}$=2×$\frac{π}{2}$,求得ω=2,
∴f(x)=2sin(2x-$\frac{π}{6}$)+1,
∴$f(\frac{π}{3})$=2sin(3×$\frac{π}{3}$-$\frac{π}{6}$)+1=2sin$\frac{5π}{6}$+2=3,
故答案为:3
点评 本题主要考查由函数y=Asin(ωx+φ)+B的部分图象求解析式,由函数的最值求出A和B,由周期求出ω,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,0)∪(2,+∞) | B. | (-∞,-2)∪(2,+∞) | C. | (-∞,-2)∪(0,2) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com