精英家教网 > 高中数学 > 题目详情
1.函数y=x2-x-lnx在区间[1,3]上的最小值等于0.

分析 求出函数的导数,根据x的范围,求出函数的单调性,从而求出函数的最小值即可.

解答 解:y′=2x-1-$\frac{1}{x}$=$\frac{(2x+1)(x-1)}{x}$,
由x∈[1,3],
故y′≥0在[1,3]恒成立,
故函数在[1,3]递增,
x=1时,函数取最小值,
函数的最小值是0,
故答案为:0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.“直线ax+3y+3=0和直线4x+(a+1)y+4=0平行”的充要条件是“a=(  )”
A.-4或3B.-$\frac{3}{7}$C.-3D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆过点A(2,-$\frac{4\sqrt{5}}{3}$)、B(-1,$\frac{8\sqrt{2}}{3}$)求椭圆的标准方程,顶点坐标,焦点坐标及离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为($\frac{4}{5}$,-$\frac{3}{5}$),∠AOC=α,若|BC|=1,则$\sqrt{3}$cos2$\frac{α}{2}$-sin$\frac{α}{2}$cos$\frac{α}{2}$-$\frac{\sqrt{3}}{2}$的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{4})}^x},x∈[-2017,0)}\\{{4^x},x∈[0,2017]}\end{array}}$,则f(log23)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数 f (x)=x2ln x,若关于x的不等式 f (x)-kx+1≥0恒成立,则实数k 的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数(i-1-i)3的虚部为(  )
A.8iB.-8iC.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x2+x-lnx在x=a处的切线与直线2x+2y-1=0垂直,则a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若复数(a2+i)(1+ai)(a∈R)是实数,则实数a的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

同步练习册答案