精英家教网 > 高中数学 > 题目详情
12.化简(1+${2}^{-\frac{1}{2}}$)(1+${2}^{-\frac{1}{4}}$)(1+${2}^{-\frac{1}{8}}$)(1+${2}^{-\frac{1}{16}}$)(1+${2}^{-\frac{1}{32}}$)的结果是$\frac{1}{2-{2}^{\frac{31}{32}}}$.

分析 利用“平方差公式”先计算:(1+${2}^{-\frac{1}{2}}$)(1+${2}^{-\frac{1}{4}}$)(1+${2}^{-\frac{1}{8}}$)(1+${2}^{-\frac{1}{16}}$)(1+${2}^{-\frac{1}{32}}$)$(1-{2}^{-\frac{1}{32}})$,即可得出.

解答 解:(1+${2}^{-\frac{1}{2}}$)(1+${2}^{-\frac{1}{4}}$)(1+${2}^{-\frac{1}{8}}$)(1+${2}^{-\frac{1}{16}}$)(1+${2}^{-\frac{1}{32}}$)$(1-{2}^{-\frac{1}{32}})$
=(1+${2}^{-\frac{1}{2}}$)(1+${2}^{-\frac{1}{4}}$)(1+${2}^{-\frac{1}{8}}$)(1+${2}^{-\frac{1}{16}}$)$(1-{2}^{-\frac{1}{16}})$
=(1+${2}^{-\frac{1}{2}}$)(1+${2}^{-\frac{1}{4}}$)(1+${2}^{-\frac{1}{8}}$)$(1-{2}^{-\frac{1}{8}})$
=(1+${2}^{-\frac{1}{2}}$)(1+${2}^{-\frac{1}{4}}$)$(1-{2}^{-\frac{1}{4}})$
=$(1+{2}^{-\frac{1}{2}})(1-{2}^{-\frac{1}{2}})$
=1-2-1
=$\frac{1}{2}$,
∴原式=$\frac{\frac{1}{2}}{1-{2}^{-\frac{1}{32}}}$=$\frac{1}{2-{2}^{\frac{31}{32}}}$.
故答案为:$\frac{1}{2-{2}^{\frac{31}{32}}}$.

点评 本题考查了乘法公式的应用、根式的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图所示,四凌锥P-ABCD的底面ABCD为矩形,E.F,H分别AB,CD,PD的中点,求证:平面AFH∥平面PCE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若1<a<2,-1<b<3,则2a-3b的值可以是(  )
A.-9B.3C.7D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-ax-$\frac{3}{4}$a(a∈R)的两个零点为x1、x2
(1)若f(x)<0的解集为(x1,x2),且x2-x1=2,求a的值;
(2)x1,x2能否作为某个Rt△ABC两个锐角的正弦值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a},\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则|2$\overrightarrow{a}-\overrightarrow{b}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点M(3,2),点P在y轴上运动,点Q在圆C:(x-1)2+(y+2)2=4上运动,则|$\overrightarrow{MP}+\overrightarrow{MQ}$|的最小值为(  )
A.3B.5C.2$\sqrt{5}$-1D.2$\sqrt{5}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,经过圆锥顶点S的一个截面SAB和底面成60°的二面角,截底面所得弧长所对圆心角为120°,底面圆心O到截面SAB的距离为30cm,求棱锥S-OAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求证:正三棱柱三个侧面的三条两两异面的对角线中,只要有一对互相垂直,另两对也互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.分母有理化$\frac{1}{\root{3}{4}+\root{3}{6}+\root{3}{9}}$=$\root{3}{3}-\root{3}{2}$.

查看答案和解析>>

同步练习册答案