精英家教网 > 高中数学 > 题目详情
6.已知函数f(x),g(x)分别由如表给出:
x123
f(x)131
x123
g(x)321
则f(g(1))的值为1.

分析 由已知的函数函数f(x),g(x)的对应表,知g(1)=3,从而f(g(1))=f(3),由此能求出结果.

解答 解:由已知的函数函数f(x),g(x)的对应表,知:
g(1)=3,
∴f(g(1))=f(3)=1.
故答案为:1.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.f(x)在R上为奇函数,且当x>0时f(x)=x-1,则当x<0时f(x)=x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x、y满足方程x2+y2+4y-96=0,有下列结论:
①x+y的最小值为$-2-10\sqrt{2}$;
②对任意实数m,方程(m-2)x-(2m+1)y+16m+8=0(m∈R)与题中方程必有两组不同的实数解;
③过点M(0,18)向题中方程所表示曲线作切线,切点分别为A、B,则直线AB的方程为y=3;
④若x,y∈N*,则xy的值为36或32.
以上结论正确的有①③④(用序号表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点P(4,8)且被圆x2+y2=25截得的弦长为6的直线方程是(  )
A.3x-4y+20=0B.3x-4y+20=0或x=4C.4x-3y+8=0D.4x-3y+8=0或x=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=x3+x的递增区间是(  )
A.(-∞,1)B.(-1,1)C.(-∞,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=x(3-2x)($0<x<\frac{3}{2}$)的最大值是(  )
A.$\frac{9}{8}$B.$\frac{9}{4}$C.$\frac{3}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.崇庆中学高三年级某班班班主任近期对班上每位同学的成绩作相关分析时,得到周同学的某些成绩数据如下:
第一次考试第二次考试第三次考试第四次考试
数学总分118119121122
总分年级排名133127121119
(1)求总分年级名次关于数学总分的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$(必要时用分数表示)
(2)若周同学想在下次的测试时考入年级前100名,预测该同学下次测试的数学成绩至少应考多少分(取整数,可四舍五入).
(参考公式$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在极坐标系中,圆C1:ρ=4cosθ与圆C2:ρ=2sinθ相交于A,B两点,则|AB|=(  )
A.2B.$\sqrt{2}$C.$\frac{{4\sqrt{5}}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={x|-2x+1>0},N={x|x<a},若M⊆N,则a的范围是(  )
A.$a>\frac{1}{2}$B.$a<\frac{1}{2}$C.$a≤\frac{1}{2}$D.$a≥\frac{1}{2}$

查看答案和解析>>

同步练习册答案