【题目】已知函数.
(1)若,且,求证:;
(2)若时,恒有,求的最大值.
【答案】(1)见解析;(2).
【解析】
(1)利用导数分析函数的单调性,并设,则,,将不等式等价转化为证明,构造函数,利用导数分析函数在区间上的单调性,通过推导出来证得结论;
(2)构造函数,对实数分、、,利用导数分析函数的单调性,求出函数的最小值,再通过构造新函数,利用导数求出函数的最大值,可得出的最大值.
(1),,所以,函数单调递增,
所以,当时,,此时,函数单调递减;
当时,,此时,函数单调递增.
要证,即证.
不妨设,则,,
下证,即证,
构造函数,
,所以,函数在区间上单调递增,
,,即,即,
,且函数在区间上单调递增,
所以,即,故结论成立;
(2)由恒成立,得恒成立,
令,则.
①当时,对任意的,,函数在上单调递增,
当时,,不符合题意;
②当时,;
③当时,令,得,此时,函数单调递增;
令,得,此时,函数单调递减.
.
.
令,设,则.
当时,,此时函数单调递增;
当时,,此时函数单调递减.
所以,函数在处取得最大值,即.
因此,的最大值为.
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥
B.四棱锥的四个侧面都可以是直角三角形
C.有两个平面互相平行,其余各面都是梯形的多面体是棱台
D.棱台的各侧棱延长后不一定交于一点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如表数据:
处罚金额(单位:元) | 5 | 10 | 15 | 20 |
会闯红灯的人数 | 50 | 40 | 20 | 10 |
若用表中数据所得频率代替概率.
(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其他市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线经过点,其倾斜角为.以原点为极点,以轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.
(1)写出直线的参数方程,若直线与曲线有公共点,求的取值范围.
(2)设为曲线上任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1, 在直角梯形中, , , , 为线段的中点. 将沿折起,使平面 平面,得到几何体,如图2所示.
(1)求证: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学的十佳校园歌手有6名男同学,4名女同学,其中3名来自1班,其余7名来自其他互不相同的7个班,现从10名同学中随机选择3名参加文艺晚会,则选出的3名同学来自不同班级的概率为_____,设X为选出3名同学中女同学的人数,则该变量X的数学期望为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,的最大值为.
(Ⅰ)求实数的值;
(Ⅱ)当时,讨论函数的单调性;
(Ⅲ)当时,令,是否存在区间.使得函数在区间上的值域为若存在,求实数的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2021年起,新高考科目设置采用“”模式,普通高中学生从高一升高二时将面临着选择物理还是历史的问题,某校抽取了部分男、女学生调查选科意向,制作出如右图等高条形图,现给出下列结论:
①样本中的女生更倾向于选历史;
②样本中的男生更倾向于选物理;
③样本中的男生和女生数量一样多;
④样本中意向物理的学生数量多于意向历史的学生数量.
根据两幅条形图的信息,可以判断上述结论正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com