分析 (1)设AN=x,AM=y,则x2+y2=16,从而利用基本不等式求最大值;
(2)S1=$\frac{1}{4}$×8×6=12,当AMN构成三角形时,xy=24,从而可得y=$\frac{24}{x}$(3≤x≤6);从而化简为t+$\frac{2{4}^{2}}{t}$,从而讨论函数的单调性可得48≤l2≤73,且l的大小连续,易知l的最小值为6<4$\sqrt{3}$,从而求得.
解答 解:(1)当l=4时,AMN构成三角形,
设AN=x,AM=y,则x2+y2=16,
故S1=$\frac{1}{2}$xy≤$\frac{1}{2}$$\frac{{x}^{2}+{y}^{2}}{2}$=4,
(当且仅当x=y=2$\sqrt{2}$时,等号成立);
故S1的最大值为4cm2;
(2)S1=$\frac{1}{4}$×8×6=12,
当AMN构成三角形时,
设AN=x,AM=y,则S1=$\frac{1}{2}$xy=12,
故xy=24,故y=$\frac{24}{x}$(3≤x≤6);
x2+y2=x2+$\frac{2{4}^{2}}{{x}^{2}}$,
令t=x2,(9≤t≤36),
故x2+$\frac{2{4}^{2}}{{x}^{2}}$=t+$\frac{2{4}^{2}}{t}$,
故t+$\frac{2{4}^{2}}{t}$在[9,24]上是减函数,在[24,36]上是增函数;
且9+$\frac{2{4}^{2}}{9}$=73,24+24=48,36+$\frac{2{4}^{2}}{36}$=52,
故48≤l2≤73,
故4$\sqrt{3}$≤l≤$\sqrt{73}$;
且l的大小连续,易知l的最小值为6<4$\sqrt{3}$,
故6≤l≤$\sqrt{73}$.
点评 本题考查了分类讨论的思想应用及基本不等式的解法与应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | p∨q为真,p∧q为假 | B. | p∨q为假,p∧q为假 | C. | p∨q为真,p∧q为假 | D. | p∨q为假,p∧q为真 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com