精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)若时,请讨论函数的单调性;

(Ⅱ)当时,若上有零点,求实数的取值范围.

【答案】(Ⅰ)分类讨论,详见解析;(Ⅱ).

【解析】

(Ⅰ)求导,分讨论导函数正负,即得函数的单调性;

(Ⅱ)结合(Ⅰ)中分析得到的单调性,且,可得,分两种情况讨论,结合单调性和边界点,极值点正负,即得解.

:(Ⅰ)函数的定义域为

.

.

时,上恒成立,

所以的单调递减区间是,没有单调递增区间.

时由为增函数

为减函数

所以的单调递增区间是,单调递减区间是.

故当时,的单调递减区间是,没有单调递增区间.

时,的单调递增区间是,单调递减区间是

(Ⅱ)当时,的单调递增区间是,单调递减区间是.

时,为增函数,上有零点,则

时,递增,在递减,

综合得:实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体中,如图,分别是正方形的中心.则下列结论正确的是(

A.平面的交点是的中点

B.平面的交点是的三点分点

C.平面的交点是的三等分点

D.平面将正方体分成两部分的体积比为11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,没售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了130吨该商品,现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.

(Ⅰ)视分布在各区间内的频率为相应的概率,求

Ⅱ)将表示为的函数,求出该函数表达式;

Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如则取的概率等于市场需求量落入的频率),的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的侧棱垂直于底面,且是棱的中点.

1)证明:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,=2,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且△PF1F2的面积为2

1)求椭圆的标准方程;

2)设斜率为1的直线与以原点为圆心,半径为的圆交于AB两点,与椭圆C交于CD两点,且),当取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.直线的极坐标方程为

(1)求曲线的极坐标方程与直线的直角坐标方程;

(2)已知直线与曲线交于两点,与轴交于点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上,且点到点的最大距离为,点到点的最小距离为.

1)求椭圆的标准方程;

2)若直线交椭圆两点,坐标原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点,点轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于两点,且.

1)求抛物线的方程;

2)直线与抛物线交于两点,若,求点到直线的最大距离.

查看答案和解析>>

同步练习册答案