【题目】为缓解堵车现象,解决堵车问题,银川市交警队调查了甲乙两个路口的车流量,在2019年6月随机选取了14天,统计每天上午7:30-9:00早高峰时段各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.
(1)甲乙两个路口的车流量的中位数分别是多少?
(2)试计算甲乙两个路口的车流量在之间的频率.
科目:高中数学 来源: 题型:
【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是
A. 至少有一个白球;都是白球 B. 至少有一个白球;至少有一个红球
C. 至少有一个白球;红、黑球各一个 D. 恰有一个白球;一个白球一个黑球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在上是减函数,在上是增函数若函数,利用上述性质,
Ⅰ当时,求的单调递增区间只需判定单调区间,不需要证明;
Ⅱ设在区间上最大值为,求的解析式;
Ⅲ若方程恰有四解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年11月3日20点43分我国长征运载火箭在海南文昌发射中心成功发射,它被公认为我国已从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用很多新材料,甲工厂承担了某种材料的生产,并以千克/时的速度匀速生产(为保证质量要求),每小时可消耗材料千克,已知每小时生产1千克该产品时,消耗材料10千克.
(1)设生产千克该产品,消耗材料千克,试把表示为的函数.
(2)要使生产1000千克该产品消耗的材料最少,工厂应选取何种生产速度?并求消耗的材料最少为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知且设,绿地面积为.
(1)写出关于的函数关系式,并指出这个函数的定义域.
(2)当为何值时,绿地面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且.
(1)求数列的通项公式;
(2)设,数列的前项和为,求使不等式对一切都成立的正整数的最大值.
(3)设,是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为的正方形,,是的中点,是线段上异于端点的一点,平面 平面,.
(Ⅰ)证明:;
(Ⅱ)若与平面所成的角的正弦值为,求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】巳知集合P={},Q={},将P∪Q的所有元素从小到大依次排列构成一个数列{},记为数列{}的前n项和,则使得<1000成立的的最大值为
A. 9 B. 32 C. 35 D. 61
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com