分析 (1)运用分段函数求得f(x)的解析式,由f(x)≥2,即有$\left\{\begin{array}{l}{2x-1≥2}\\{-1<x<2}\end{array}\right.$或x≥2,解不等式即可得到所求解集;
(2)由题意可得|x+a|≤4-x+x-2=2在[2,3]恒成立.则-2≤x+a≤2在[2,3]恒成立.即有-x-2≤a≤-x+2在[2,3]恒成立.求得不等式两边的最值,即可得到a的范围.
解答 解:(1)当a=1时,f(x)=|x+1|-|x-2|
=$\left\{\begin{array}{l}{-3,x≤-1}\\{2x-1,-1<x<2}\\{3,x≥2}\end{array}\right.$,
由f(x)≥2,即有$\left\{\begin{array}{l}{2x-1≥2}\\{-1<x<2}\end{array}\right.$或x≥2,
可得$\frac{3}{2}$≤x<2或x≥2,
即为x≥$\frac{3}{2}$.
故不等式f(x)≥2的解集{x|x≥$\frac{3}{2}$};
(2)f(x)≤|x-4|的解集包含[2,3],
即为|x+a|≤|x-4|+|x-2|在[2,3]恒成立,
即有|x+a|≤4-x+x-2=2在[2,3]恒成立.
则-2≤x+a≤2在[2,3]恒成立.
即有-x-2≤a≤-x+2在[2,3]恒成立.
由-x-2的最大值为-4,-x+2的最小值为-1.
故-4≤a≤-1.
则实数a的取值范围是[-4,-1].
点评 本题考查绝对值不等式的解法,注意运用绝对值的意义,考查不等式恒成立问题的解法,注意运用参数分离和转化思想,求函数的最值,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,0) | B. | (0,-1) | C. | (1,0) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
家庭编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,0,1) | (1,2,1) | (1,2,2) | (1,1,1) | (1,2,2) | (1,2,1) | (1,1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 当n=11时命题不成立 | B. | 当n=11时命题成立 | ||
C. | 当n=9时命题不成立 | D. | 当n=9时命题成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6 | B. | 3$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com