【题目】某校有一块圆心,半径为200米,圆心角为的扇形绿地,半径的中点分别为,为弧上的一点,设,如图所示,拟准备两套方案对该绿地再利用.
(1)方案一:将四边形绿地建成观赏鱼池,其面积记为,试将表示为关于的函数关系式,并求为何值时,取得最大?
(2)方案二:将弧和线段围成区域建成活动场地,其面积记为,试将表示为关于的函数关系式;并求为何值时,取得最大?
科目:高中数学 来源: 题型:
【题目】下面几种推理中是演绎推理的序号为( )
A.由金、银、铜、铁可导电,猜想:金属都可导电
B.猜想数列 {an}的通项公式为 (n∈N+)
C.半径为r圆的面积S=πr2 , 则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x﹣a)2+(y﹣b)2=r2 , 推测空间直角坐标系中球的方程为(x﹣a)2+(y﹣b)2+(z﹣c)2=r2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线与抛物线y2=4x相交于不同的A,B两点,O为坐标原点.
(1) 如果直线过抛物线的焦点且斜率为1,求的值;
(2)如果,证明:直线必过一定点,并求出该定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷、0.76万公顷,则沙漠增加数y(万公顷)关于年数x的函数关系较为近似的是( )
A.y=0.2x
B.
C.
D.y=0.2+log16x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面为梯形, 底面, , , , .
(1)求证:平面 平面;
(2)设为上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,射线,与, 各有一个交点,当时,这两个交点间的距离为2,当,这两个交点重合.
(1)分别说明, 是什么曲线,并求出与的值;
(2)设当时, 与, 的交点分别为,当, 与, 的交点分别为,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆()的一个焦点是, 为坐标原点,且椭圆短轴的两个三等分点与一个焦点构成正三角形,过点的直线交椭圆于点.
(1)求椭圆的方程;
(2)设为椭圆上一点,且满足,当,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.
(1)若a=2,b= ,求cosC的值;
(2)若sinAcos2 +sinBcos2 =2sinC,且△ABC的面积S= sinC,求a和b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com