精英家教网 > 高中数学 > 题目详情
(2010•武汉模拟)已知f(x)=tanx,x∈(0,
π
2
),若存在a,b∈(0,
π
2
),使f(cota)=a,cot[f(b)]=b同时成立,则(  )
分析:利用已知的函数关系式,问题等价于tan(cota)=a,cot(tanb)=b同时成立,代入验证可得答案.
解答:解:由题意,∵f(cota)=a,cot[f(b)]=b,
∴tan(cota)=a,cot(tanb)=b
对于A,a=tanb,则tan(cota)=tanb,此时,不一定有cota=b,故不成立;
对于B,当b=cota 时,tanb=a,cot(tanb)=cota=b,即tan(cota)=a,cot(tanb)=b同时成立,∴f(cota)=a,cot[f(b)]=b同时成立,
对于C,若a=b,则tan(cota)=cot(tana),不成立;
对于D,若a+b=
π
2
,则a=
π
2
-b,tan(cota)=tan(tanb)=a,不成立;
故选B.
点评:本题以函数为载体,考查三角函数,考查等价转化,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•武汉模拟)函数t=f(x+2)的图象过点P(-1,3),则函数y=f(x)的图象关于原点O对称的图象一定过点
(-1,-3)
(-1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)已知数列{an}满足an+1=
1+an
3-an
(n∈N*),且a1=0

(1)求a2,a3
(2)若存在一个常数λ,使得数列{
1
an
}
为等差数列,求λ值;
(3)求数列{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)若cosα=
3
5
,-
π
2
<α<0,则tanα
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)“数列{an}为等比数列”是“数列{an+an+1}为等比数列”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)两直线2x+y+2=0与ax+4y-2=0垂直,则其交点坐标为
(-1,0)
(-1,0)

查看答案和解析>>

同步练习册答案