精英家教网 > 高中数学 > 题目详情
在△ABC中,若cos(
π
2
-A):sinB:cos(
2
+C)=3:2:4
,则cosC的值为
-
1
4
-
1
4
分析:由题意可得 sinA:sinB:sinC=3:2:4,再由正弦定理可得a:b:c=3:2:4,设a=3x,则b=2x,c=4x,再由余弦定理求得cosC 的值.
解答:解:由题意可得sinA:sinB:sinC=3:2:4,再由正弦定理可得a:b:c=3:2:4.
设a=3x,则b=2x,c=4x.
再由余弦定理可得 cosC=
a2 +b2-c2
2ab
=
9x2+4x2-16x2
12x2
=-
1
4

故答案为 -
1
4
点评:本题主要考查诱导公式、由正弦定理、余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量
m
=(2a-c,b)与向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大小;
(2)求函数y=2sin2C+cos(B-2C)的值域;
(3)若AB边上的中线CO=2,动点P满足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB边上的中线CO=4,若动点P满足
PA
=sin2
θ
2
OA
+cos2
θ
2
CA
(θ∈R)
,则(
PA
+
PB
)•
PC
的最小值是
-8
-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在△ABC中,AB边上的中线CO=4,若动点P满足数学公式,则数学公式的最小值是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,AB边上的中线CO=4,若动点P满足
PA
=sin2
θ
2
OA
+cos2
θ
2
CA
(θ∈R)
,则(
PA
+
PB
)•
PC
的最小值是______.

查看答案和解析>>

科目:高中数学 来源:2013年吉林省实验中学高考数学二模试卷(文科)(解析版) 题型:填空题

在△ABC中,AB边上的中线CO=4,若动点P满足,则的最小值是   

查看答案和解析>>

同步练习册答案