精英家教网 > 高中数学 > 题目详情

【题目】设集合M={x|x2+3x+2<0},集合 ,则M∪N=(
A.{x|x≥﹣2}
B.{x|x>﹣1}
C.{x|x<﹣1}
D.{x|x≤﹣2}

【答案】A
【解析】解答:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1}, 集合 ={x|2x≤22}={x|﹣x≤2}={x|x≥﹣2},
∴M∪N={x|x≥﹣2},
故选A.
分析:根据题意先求出集合M和集合N,再求M∪N.
【考点精析】关于本题考查的解一元二次不等式,需要了解求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为.

1)求椭圆的方程;

2)直线过椭圆的左焦点,且与椭圆交于两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左右顶点分别是为直线上一点(点在轴的上方),直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.

(1)若的面积是的面积的,求直线的方程;

(2)设直线与直线的斜率分别为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】E是正方形ABCD的边CD的中点,将△ADEAE旋转,则直线AD与直线BE所成角的余弦值的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,ABC是以BC为斜边的等腰直角三角形,BCD是边长为2的正三角形.

(Ⅰ)当AD为多长时,

(Ⅱ)当二面角BACD时,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设e<x<10,记a=ln(lnx),b=lg(lgx),c=ln(lgx),d=lg(lnx),则a,b,c,d的大小关系(
A.a<b<c<d
B.c<d<a<b
C.c<b<d<a
D.b<d<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市有一直角梯形绿地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.现过边界CD上的点E处铺设一条直的灌溉水管EF,将绿地分成面积相等的两部分.

(1)如图①,若E为CD的中点,F在边界AB上,求灌溉水管EF的长度;
(2)如图②,若F在边界AD上,求灌溉水管EF的最短长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣(x﹣2m)(x+m+3)(其中m<﹣1),g(x)=2x﹣2.
(1)若命题“log2g(x)<1”是真命题,求x的取值范围;
g(x)<0.若p∧q是真命题,求m的取值范围.
(2)设命题p:x∈(1,+∞),f(x)<0或g(x)<0;命题q:x∈(﹣1,0),f(x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈ .人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是(
A.d≈
B.d≈
C.d≈
D.d≈

查看答案和解析>>

同步练习册答案