精英家教网 > 高中数学 > 题目详情
已知△ABC中,A(1,3),AB、AC边上的中线所在直线方程分别为x-2y+1=0和y-1=0,求△ABC各边所在直线方程.
分析:B点应满足的两个条件是:①B在直线y-1=0上;②BA的中点D在直线x-2y+1=0上.由①可设B(xB,1),进而由②确定xB值,得到B点坐标;同理设出点C的纵坐标,根据中点坐标公式和C在x-2y+1=0上可求出C点坐标,然后利用两点式分别求出三边所在的直线方程即可.
解答:解:设B(xB,1)则AB的中点D(
xB+1
2
,2)

∵D在中线CD:x-2y+1=0上
xB+1
2
-2•2+1=0

解得xB=5,故B(5,1).
同样,因点C在直线x-2y+1=0上,可以设C为(2yC-1,yC),
根据
yc+3
2
=1,解出yC=-1,
所以C(-3,-1).
根据两点式,得直线AB的方程为y-3=
3-1
1-5
(x-1);
直线BC的方程为y-1=
-1-1
-3-5
(x-5);
直线AC的方程为y-3=
-1-3
-3-1
(x-1)
化简得△ABC中直线AB:x+2y-7=0,
直线BC:x-4y-1=0,
直线AC:x-y+2=0.
点评:此题是一道综合题,要求学生灵活运用中点坐标公式,掌握点在直线上则点的坐标满足直线方程化简求值,会根据条件写出直线的一般式方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB边上的高所在的直线方程;
(2)直线l∥AB,与AC,BC依次交于E,F,S△CEF:S△ABC=1:4.求l所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2,b=1,C=60°,则边长c=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
n
=(cos
A
2
,sin
A
2
)
满足
m
n
=
1
2
.(1)若△ABC的面积S=
3
,求b+c的值.(2)求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A,B,C的对边分别为a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判断△ABC的形状,并求t=sinA+sinB的取值范围;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,对任意的满足题意的a,b,c都成立,求k的取值范围.

查看答案和解析>>

同步练习册答案