如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.
(1) y=3或3x+4y-12=0 (2)
【解析】
解 (1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.
设过A(0,3)的圆C的切线方程为y=kx+3,由题意,得=1,解得k=0或-,故所求切线方程为y=3或3x+4y-12=0.
(2)因为圆心在直线y=2x-4上,
所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.
设点M(x,y),因为|MA|=2|MO|,所以=2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.
由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤|CD|≤2+1,
即1≤≤3.整理得-8≤5a2-12a≤0.
由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤.
所以点C的横坐标a的取值范围是.
科目:高中数学 来源:2014年高考数学(理)二轮专题复习真题感悟1-6练习卷(解析版) 题型:填空题
若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮专题复习真题感悟1-1练习卷(解析版) 题型:选择题
设a,b,c∈R,且a>b,则 ( ).
A.ac>bc B. <
C.a2>b2 D.a3>b3
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习真题感悟江苏专用常考问题4练习卷(解析版) 题型:解答题
设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习真题感悟江苏专用常考问题4练习卷(解析版) 题型:填空题
如图,在三棱柱A1B1C1?ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F?ADE的体积为V1,三棱柱A1B1C1?ABC的体积为V2,则V1∶V2=______.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习真题感悟江苏专用常考问题3练习卷(解析版) 题型:填空题
函数y=x2(x>0)的图象在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习真题感悟江苏专用常考问题2练习卷(解析版) 题型:填空题
已知e1,e2是夹角为π的两个单位向量,a=e1-2e2,b=ke1+e2,若a·b=0,则k的值为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习真题感悟江苏专用常考问题1练习卷(解析版) 题型:填空题
将一个长宽分别是a,b(0<b<a)的铁皮的四角切去相同的正方形,然后折成一个无盖的长方体的盒子,若这个长方体的外接球的体积存在最小值,则的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测4练习卷(解析版) 题型:填空题
设圆C的圆心与双曲线=1(a>0)的右焦点重合,且该圆与此双曲线的渐近线相切,若直线l:x-y=0被圆C截得的弦长等于2,则a的值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com